Beispiel #1
0
def test_iterator():
    """
    Tests whether SparseDataset can be loaded and
    initializes iterator
    """

    x = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
    ds = SparseDataset(from_scipy_sparse_dataset=x)
    it = ds.iterator(mode='sequential', batch_size=1)
    it.next()
def test_iterator():
    """
    Tests whether SparseDataset can be loaded and
    initializes iterator
    """

    x = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
    ds = SparseDataset(from_scipy_sparse_dataset=x)
    it = ds.iterator(mode='sequential', batch_size=1)
    it.next()
Beispiel #3
0
def test_training_a_model():
    """
    tests wether SparseDataset can be trained
    with a dummy model.
    """

    dim = 3
    m = 10
    rng = np.random.RandomState([22, 4, 2014])

    X = rng.randn(m, dim)
    ds = csr_matrix(X)
    dataset = SparseDataset(from_scipy_sparse_dataset=ds)

    model = SoftmaxModel(dim)
    learning_rate = 1e-1
    batch_size = 5

    epoch_num = 2
    termination_criterion = EpochCounter(epoch_num)

    cost = DummyCost()

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=batch_size,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    train = Train(dataset,
                  model,
                  algorithm,
                  save_path=None,
                  save_freq=0,
                  extensions=None)

    train.main_loop()