Beispiel #1
0
        #'lr_vb': 0.10,
        'irange': 0.001,
    }

    # A symbolic input representing your minibatch.
    minibatch = tensor.matrix()
    minibatch = theano.printing.Print('min')(minibatch)

    # Allocate a denoising autoencoder with binomial noise corruption.
    cae = ContractiveAutoencoder(conf['nvis'], conf['nhid'], conf['act_enc'],
                                 conf['act_dec'])

    # Allocate an optimizer, which tells us how to update our model.
    cost = SquaredError(cae)(minibatch, cae.reconstruct(minibatch)).mean()
    cost += cae.contraction_penalty(minibatch).mean()
    trainer = SGDOptimizer(cae, conf['base_lr'], conf['anneal_start'])
    updates = trainer.cost_updates(cost)

    # Finally, build a Theano function out of all this.
    train_fn = theano.function([minibatch], cost, updates=updates)

    # Suppose we want minibatches of size 10
    batchsize = 10

    # Here's a manual training loop. I hope to have some classes that
    # automate this a litle bit.
    for epoch in xrange(5):
        for offset in xrange(0, data.shape[0], batchsize):
            minibatch_err = train_fn(data[offset:(offset + batchsize)])
            print("epoch %d, batch %d-%d: %f" %
                  (epoch, offset, offset + batchsize - 1, minibatch_err))
Beispiel #2
0
        #'lr_vb': 0.10,
        'irange': 0.001,
    }

    # A symbolic input representing your minibatch.
    minibatch = tensor.matrix()
    minibatch = theano.printing.Print('min')(minibatch)

    # Allocate a denoising autoencoder with binomial noise corruption.
    cae = ContractiveAutoencoder(conf['nvis'], conf['nhid'],
                                 conf['act_enc'], conf['act_dec'])

    # Allocate an optimizer, which tells us how to update our model.
    cost = SquaredError(cae)(minibatch, cae.reconstruct(minibatch)).mean()
    cost += cae.contraction_penalty(minibatch).mean()
    trainer = SGDOptimizer(cae, conf['base_lr'], conf['anneal_start'])
    updates = trainer.cost_updates(cost)

    # Finally, build a Theano function out of all this.
    train_fn = theano.function([minibatch], cost, updates=updates)

    # Suppose we want minibatches of size 10
    batchsize = 10

    # Here's a manual training loop. I hope to have some classes that
    # automate this a litle bit.
    for epoch in xrange(5):
        for offset in xrange(0, data.shape[0], batchsize):
            minibatch_err = train_fn(data[offset:(offset + batchsize)])
            print ("epoch %d, batch %d-%d: %f" %
                   (epoch, offset, offset + batchsize - 1, minibatch_err))
            W_irange=conf['W_irange'],
            rng=rng)

    sampler = PersistentCDSampler(
            rbm,
            data[0:conf['batch_size']],
            rng,
            steps=conf['pcd_steps'],
            particles_clip=(conf['particles_min'], conf['particles_max']),
            )
    minibatch = tensor.matrix()

    optimizer = SGDOptimizer(
            rbm,
            conf['base_lr'],
            conf['anneal_start'],
            log_alpha_clip=(numpy.log(conf['alpha_min']), numpy.log(conf['alpha_max'])),
            B_clip=(conf['B_min'], conf['B_max']),
            Lambda_clip=(conf['Lambda_min'], conf['Lambda_max']),
            )
    updates = training_updates(visible_batch=minibatch, model=rbm,
                               sampler=sampler, optimizer=optimizer)

    proxy_cost = rbm.reconstruction_error(minibatch, rng=sampler.s_rng)
    train_fn = theano.function([minibatch], proxy_cost, updates=updates)

    vis = tensor.matrix('vis')
    free_energy_fn = theano.function([vis], rbm.free_energy_given_v(vis))

    utils.debug.setdebug()

    recon = []
Beispiel #4
0
def main_train(epochs, batchsize, solution="", sparse_penalty=0, sparsityTarget=0, sparsityTargetPenalty=0):

    # Experiment specific arguments
    conf_dataset = {
        "dataset": "avicenna",
        "expname": "dummy",  # Used to create the submission file
        "transfer": True,
        "normalize": True,  # (Default = True)
        "normalize_on_the_fly": False,  # (Default = False)
        "randomize_valid": True,  # (Default = True)
        "randomize_test": True,  # (Default = True)
        "saving_rate": 0,  # (Default = 0)
        "savedir": "./outputs",
    }

    # First layer = PCA-75 whiten
    pca_layer = {
        "name": "1st-PCA",
        "num_components": 75,
        "min_variance": -50,
        "whiten": True,
        "pca_class": "CovEigPCA",
        # Training properties
        "proba": [1, 0, 0],
        "savedir": "./outputs",
    }

    # Load the dataset
    data = utils.load_data(conf_dataset)

    if conf_dataset["transfer"]:
        # Data for the ALC proxy
        label = data[3]
        data = data[:3]

    # First layer : train or load a PCA
    pca = create_pca(conf_dataset, pca_layer, data, model=pca_layer["name"])
    data = [utils.sharedX(pca.function()(set.get_value(borrow=True)), borrow=True) for set in data]
    """
    if conf_dataset['transfer']:
        data_train, label_train = utils.filter_labels(data[0], label)

        alc = embed.score(data_train, label_train)
        print '... resulting ALC on train (for PCA) is', alc
    """

    nvis = utils.get_constant(data[0].shape[1]).item()

    conf = {
        "corruption_level": 0.1,
        "nhid": 200,
        "nvis": nvis,
        "anneal_start": 100,
        "base_lr": 0.001,
        "tied_weights": True,
        "act_enc": "sigmoid",
        "act_dec": None,
        #'lr_hb': 0.10,
        #'lr_vb': 0.10,
        "tied_weights": True,
        "solution": solution,
        "sparse_penalty": sparse_penalty,
        "sparsityTarget": sparsityTarget,
        "sparsityTargetPenalty": sparsityTargetPenalty,
        "irange": 0,
    }

    # A symbolic input representing your minibatch.
    minibatch = tensor.matrix()

    # Allocate a denoising autoencoder with binomial noise corruption.
    corruptor = GaussianCorruptor(conf["corruption_level"])
    da = DenoisingAutoencoder(
        corruptor,
        conf["nvis"],
        conf["nhid"],
        conf["act_enc"],
        conf["act_dec"],
        conf["tied_weights"],
        conf["solution"],
        conf["sparse_penalty"],
        conf["sparsityTarget"],
        conf["sparsityTargetPenalty"],
    )

    # Allocate an optimizer, which tells us how to update our model.
    # TODO: build the cost another way
    cost = SquaredError(da)(minibatch, da.reconstruct(minibatch)).mean()
    trainer = SGDOptimizer(da, conf["base_lr"], conf["anneal_start"])
    updates = trainer.cost_updates(cost)

    # Finally, build a Theano function out of all this.
    train_fn = theano.function([minibatch], cost, updates=updates)

    # Suppose we want minibatches of size 10
    proba = utils.getboth(conf, pca_layer, "proba")
    iterator = BatchIterator(data, proba, batchsize)

    # Here's a manual training loop. I hope to have some classes that
    # automate this a litle bit.
    final_cost = 0
    for epoch in xrange(epochs):
        c = []
        for minibatch_data in iterator:
            minibatch_err = train_fn(minibatch_data)
            c.append(minibatch_err)
        final_cost = numpy.mean(c)
        print "epoch %d, cost : %f" % (epoch, final_cost)

    print "############################## Fin de l'experience ############################"
    print "Calcul de l'ALC : "
    if conf_dataset["transfer"]:
        data_train, label_train = utils.filter_labels(data[0], label)
        alc = embed.score(data_train, label_train)

        print "Solution : ", solution
        print "sparse_penalty = ", sparse_penalty
        print "sparsityTarget = ", sparsityTarget
        print "sparsityTargetPenalty = ", sparsityTargetPenalty
        print "Final denoising error is : ", final_cost
        print "... resulting ALC on train is", alc
        return (alc, final_cost)
Beispiel #5
0
def main_train(epochs,
               batchsize,
               solution='',
               sparse_penalty=0,
               sparsityTarget=0,
               sparsityTargetPenalty=0):

    # Experiment specific arguments
    conf_dataset = {
        'dataset': 'avicenna',
        'expname': 'dummy',  # Used to create the submission file
        'transfer': True,
        'normalize': True,  # (Default = True)
        'normalize_on_the_fly': False,  # (Default = False)
        'randomize_valid': True,  # (Default = True)
        'randomize_test': True,  # (Default = True)
        'saving_rate': 0,  # (Default = 0)
        'savedir': './outputs',
    }

    # First layer = PCA-75 whiten
    pca_layer = {
        'name': '1st-PCA',
        'num_components': 75,
        'min_variance': -50,
        'whiten': True,
        'pca_class': 'CovEigPCA',
        # Training properties
        'proba': [1, 0, 0],
        'savedir': './outputs',
    }

    # Load the dataset
    data = utils.load_data(conf_dataset)

    if conf_dataset['transfer']:
        # Data for the ALC proxy
        label = data[3]
        data = data[:3]

    # First layer : train or load a PCA
    pca = create_pca(conf_dataset, pca_layer, data, model=pca_layer['name'])
    data = [
        utils.sharedX(pca.function()(set.get_value(borrow=True)), borrow=True)
        for set in data
    ]
    '''
    if conf_dataset['transfer']:
        data_train, label_train = utils.filter_labels(data[0], label)

        alc = embed.score(data_train, label_train)
        print '... resulting ALC on train (for PCA) is', alc
    '''

    nvis = utils.get_constant(data[0].shape[1]).item()

    conf = {
        'corruption_level': 0.1,
        'nhid': 200,
        'nvis': nvis,
        'anneal_start': 100,
        'base_lr': 0.001,
        'tied_weights': True,
        'act_enc': 'sigmoid',
        'act_dec': None,
        #'lr_hb': 0.10,
        #'lr_vb': 0.10,
        'tied_weights': True,
        'solution': solution,
        'sparse_penalty': sparse_penalty,
        'sparsityTarget': sparsityTarget,
        'sparsityTargetPenalty': sparsityTargetPenalty,
        'irange': 0,
    }

    # A symbolic input representing your minibatch.
    minibatch = tensor.matrix()

    # Allocate a denoising autoencoder with binomial noise corruption.
    corruptor = GaussianCorruptor(conf['corruption_level'])
    da = DenoisingAutoencoder(corruptor, conf['nvis'], conf['nhid'],
                              conf['act_enc'], conf['act_dec'],
                              conf['tied_weights'], conf['solution'],
                              conf['sparse_penalty'], conf['sparsityTarget'],
                              conf['sparsityTargetPenalty'])

    # Allocate an optimizer, which tells us how to update our model.
    # TODO: build the cost another way
    cost = SquaredError(da)(minibatch, da.reconstruct(minibatch)).mean()
    trainer = SGDOptimizer(da, conf['base_lr'], conf['anneal_start'])
    updates = trainer.cost_updates(cost)

    # Finally, build a Theano function out of all this.
    train_fn = theano.function([minibatch], cost, updates=updates)

    # Suppose we want minibatches of size 10
    proba = utils.getboth(conf, pca_layer, 'proba')
    iterator = BatchIterator(data, proba, batchsize)

    # Here's a manual training loop. I hope to have some classes that
    # automate this a litle bit.
    final_cost = 0
    for epoch in xrange(epochs):
        c = []
        for minibatch_data in iterator:
            minibatch_err = train_fn(minibatch_data)
            c.append(minibatch_err)
        final_cost = numpy.mean(c)
        print "epoch %d, cost : %f" % (epoch, final_cost)

    print '############################## Fin de l\'experience ############################'
    print 'Calcul de l\'ALC : '
    if conf_dataset['transfer']:
        data_train, label_train = utils.filter_labels(data[0], label)
        alc = embed.score(data_train, label_train)

        print 'Solution : ', solution
        print 'sparse_penalty = ', sparse_penalty
        print 'sparsityTarget = ', sparsityTarget
        print 'sparsityTargetPenalty = ', sparsityTargetPenalty
        print 'Final denoising error is : ', final_cost
        print '... resulting ALC on train is', alc
        return (alc, final_cost)
Beispiel #6
0
        'nhid': 30,
        'rbm_seed': 1,
        'batch_size': 100,
        'base_lr': 1e-4,
        'anneal_start': 1,
        'pcd_steps': 1,
    }

    rbm = GaussianBinaryRBM(nvis=conf['nvis'], nhid=conf['nhid'],
                         irange=0.5, energy_function_class = GRBM_Type_1)
    rng = numpy.random.RandomState(seed=conf.get('rbm_seed', 42))
    sampler = BlockGibbsSampler(rbm, data[0:100], rng,
                                  steps=conf['pcd_steps'])
    minibatch = tensor.matrix()

    optimizer = SGDOptimizer(rbm, conf['base_lr'], conf['anneal_start'])
    updates = training_updates(visible_batch=minibatch, model=rbm,
                               sampler=sampler, optimizer=optimizer)

    proxy_cost = rbm.reconstruction_error(minibatch, rng=sampler.s_rng)
    train_fn = theano.function([minibatch], proxy_cost, updates=updates)

    vis = tensor.matrix('vis')
    free_energy_fn = theano.function([vis], rbm.free_energy_given_v(vis))

    #utils.debug.setdebug()

    recon = []
    nlls = []
    for j in range(0, 401):
        avg_rec_error = 0