Beispiel #1
0
def test_vectorize_multipath():
    N = as_apply(15)

    p0 = hp_uniform('p0', 0, 1)
    loss = hp_choice('p1', [1, p0, -p0]) ** 2
    expr_idxs = scope.range(N)
    vh = VectorizeHelper(loss, expr_idxs, build=True)

    vloss = vh.v_expr
    print vloss

    full_output = as_apply([vloss,
        vh.idxs_by_label(),
        vh.vals_by_label()])

    new_vc = recursive_set_rng_kwarg(
            full_output,
            as_apply(np.random.RandomState(1)),
            )

    losses, idxs, vals = rec_eval(new_vc)
    print 'losses', losses
    print 'idxs p0', idxs['p0']
    print 'vals p0', vals['p0']
    print 'idxs p1', idxs['p1']
    print 'vals p1', vals['p1']
    p0dct = dict(zip(idxs['p0'], vals['p0']))
    p1dct = dict(zip(idxs['p1'], vals['p1']))
    for ii, li in enumerate(losses):
        print ii, li
        if p1dct[ii] != 0:
            assert li == p0dct[ii] ** 2
        else:
            assert li == 1
Beispiel #2
0
def test_vectorize_simple():
    N = as_apply(15)

    p0 = hp_uniform('p0', 0, 1)
    loss = p0 ** 2
    print loss
    expr_idxs = scope.range(N)
    vh = VectorizeHelper(loss, expr_idxs, build=True)
    vloss = vh.v_expr

    full_output = as_apply([vloss,
        vh.idxs_by_label(),
        vh.vals_by_label()])
    fo2 = replace_repeat_stochastic(full_output)

    new_vc = recursive_set_rng_kwarg(
            fo2,
            as_apply(np.random.RandomState(1)),
            )

    #print new_vc
    losses, idxs, vals = rec_eval(new_vc)
    print 'losses', losses
    print 'idxs p0', idxs['p0']
    print 'vals p0', vals['p0']
    p0dct = dict(zip(idxs['p0'], vals['p0']))
    for ii, li in enumerate(losses):
        assert p0dct[ii] ** 2 == li
Beispiel #3
0
def test_vectorize_simple():
    N = as_apply(15)

    p0 = hp_uniform('p0', 0, 1)
    loss = p0**2
    print loss
    expr_idxs = scope.range(N)
    vh = VectorizeHelper(loss, expr_idxs, build=True)
    vloss = vh.v_expr

    full_output = as_apply([vloss, vh.idxs_by_label(), vh.vals_by_label()])
    fo2 = replace_repeat_stochastic(full_output)

    new_vc = recursive_set_rng_kwarg(
        fo2,
        as_apply(np.random.RandomState(1)),
    )

    #print new_vc
    losses, idxs, vals = rec_eval(new_vc)
    print 'losses', losses
    print 'idxs p0', idxs['p0']
    print 'vals p0', vals['p0']
    p0dct = dict(zip(idxs['p0'], vals['p0']))
    for ii, li in enumerate(losses):
        assert p0dct[ii]**2 == li
Beispiel #4
0
def test_vectorize_multipath():
    N = as_apply(15)

    p0 = hp_uniform('p0', 0, 1)
    loss = hp_choice('p1', [1, p0, -p0])**2
    expr_idxs = scope.range(N)
    vh = VectorizeHelper(loss, expr_idxs, build=True)

    vloss = vh.v_expr
    print vloss

    full_output = as_apply([vloss, vh.idxs_by_label(), vh.vals_by_label()])

    new_vc = recursive_set_rng_kwarg(
        full_output,
        as_apply(np.random.RandomState(1)),
    )

    losses, idxs, vals = rec_eval(new_vc)
    print 'losses', losses
    print 'idxs p0', idxs['p0']
    print 'vals p0', vals['p0']
    print 'idxs p1', idxs['p1']
    print 'vals p1', vals['p1']
    p0dct = dict(zip(idxs['p0'], vals['p0']))
    p1dct = dict(zip(idxs['p1'], vals['p1']))
    for ii, li in enumerate(losses):
        print ii, li
        if p1dct[ii] != 0:
            assert li == p0dct[ii]**2
        else:
            assert li == 1
Beispiel #5
0
def test_vectorize_config0():
    p0 = hp_uniform('p0', 0, 1)
    p1 = hp_loguniform('p1', 2, 3)
    p2 = hp_choice('p2', [-1, p0])
    p3 = hp_choice('p3', [-2, p1])
    p4 = 1
    p5 = [3, 4, p0]
    p6 = hp_choice('p6', [-3, p1])
    d = locals()
    d['p1'] = None # -- don't sample p1 all the time, only if p3 says so
    config = as_apply(d)

    N = as_apply('N:TBA')
    expr = config
    expr_idxs = scope.range(N)
    vh = VectorizeHelper(expr, expr_idxs, build=True)
    vconfig = vh.v_expr

    full_output = as_apply([vconfig, vh.idxs_by_label(), vh.vals_by_label()])

    if 1:
        print '=' * 80
        print 'VECTORIZED'
        print full_output
        print '\n' * 1

    fo2 = replace_repeat_stochastic(full_output)
    if 0:
        print '=' * 80
        print 'VECTORIZED STOCHASTIC'
        print fo2
        print '\n' * 1

    new_vc = recursive_set_rng_kwarg(
            fo2,
            as_apply(np.random.RandomState(1))
            )
    if 0:
        print '=' * 80
        print 'VECTORIZED STOCHASTIC WITH RNGS'
        print new_vc

    Nval = 10
    foo, idxs, vals = rec_eval(new_vc, memo={N: Nval})

    print 'foo[0]', foo[0]
    print 'foo[1]', foo[1]
    assert len(foo) == Nval
    if 0:  # XXX refresh these values to lock down sampler
        assert foo[0] == {
            'p0': 0.39676747423066994,
            'p1': None,
            'p2': 0.39676747423066994,
            'p3': 2.1281244479293568,
            'p4': 1,
            'p5': (3, 4, 0.39676747423066994) }
    assert foo[1] != foo[2]

    print idxs
    print vals['p3']
    print vals['p6']
    print idxs['p1']
    print vals['p1']
    assert len(vals['p3']) == Nval
    assert len(vals['p6']) == Nval
    assert len(idxs['p1']) < Nval
    p1d = dict(zip(idxs['p1'], vals['p1']))
    for ii, (p3v, p6v) in enumerate(zip(vals['p3'], vals['p6'])):
        if p3v == p6v == 0:
            assert ii not in idxs['p1']
        if p3v:
            assert foo[ii]['p3'] == p1d[ii]
        if p6v:
            print 'p6', foo[ii]['p6'], p1d[ii]
            assert foo[ii]['p6'] == p1d[ii]
def test_vectorize_config0():
    config = config0()
    assert 'p3' == config.named_args[2][0]
    p1 = config.named_args[2][1].pos_args[1]
    assert p1.name == 'uniform'
    assert p1.pos_args[0]._obj == 2
    assert p1.pos_args[1]._obj == 3

    N = as_apply(5)
    expr = config
    expr_idxs = scope.range(N)
    vh = VectorizeHelper(expr, expr_idxs)
    vh.build_idxs()
    vh.build_vals()
    vconfig = vh.vals_memo[expr]

    full_output = as_apply([vconfig, vh.idxs_by_id(), vh.vals_by_id()])

    if 0:
        print '=' * 80
        print 'VECTORIZED'
        print full_output
        print '\n' * 1

    fo2 = replace_repeat_stochastic(full_output)
    if 0:
        print '=' * 80
        print 'VECTORIZED STOCHASTIC'
        print fo2
        print '\n' * 1

    new_vc = recursive_set_rng_kwarg(
            fo2,
            as_apply(np.random.RandomState(1))
            )
    if 0:
        print '=' * 80
        print 'VECTORIZED STOCHASTIC WITH RNGS'
        print new_vc

    foo, idxs, vals = rec_eval(new_vc)

    print foo
    #print idxs
    #print vals
    assert len(foo) == 5
    assert foo[0] == {
            'p0': 0.39676747423066994,
            'p2': 0.39676747423066994,
            'p3': 2.1281244479293568,
            'p4': 1,
            'p5': (3, 4, 0.39676747423066994) }
    assert foo[1] != foo[2]

    if 0:
        print idxs[vh.node_id[p1]]
        print vals[vh.node_id[p1]]

    # - p1 is only used sometimes
    assert len(idxs[vh.node_id[p1]]) < 5
    for ii in range(5):
        if ii in idxs[vh.node_id[p1]]:
            assert foo[ii]['p3'] == vals[vh.node_id[p1]][list(idxs[vh.node_id[p1]]).index(ii)]
        else:
            assert foo[ii]['p3'] == -2, foo[ii]['p3']
Beispiel #7
0
def test_vectorize_config0():
    p0 = hp_uniform('p0', 0, 1)
    p1 = hp_loguniform('p1', 2, 3)
    p2 = hp_choice('p2', [-1, p0])
    p3 = hp_choice('p3', [-2, p1])
    p4 = 1
    p5 = [3, 4, p0]
    p6 = hp_choice('p6', [-3, p1])
    d = locals()
    d['p1'] = None  # -- don't sample p1 all the time, only if p3 says so
    config = as_apply(d)

    N = as_apply('N:TBA')
    expr = config
    expr_idxs = scope.range(N)
    vh = VectorizeHelper(expr, expr_idxs, build=True)
    vconfig = vh.v_expr

    full_output = as_apply([vconfig, vh.idxs_by_label(), vh.vals_by_label()])

    if 1:
        print '=' * 80
        print 'VECTORIZED'
        print full_output
        print '\n' * 1

    fo2 = replace_repeat_stochastic(full_output)
    if 0:
        print '=' * 80
        print 'VECTORIZED STOCHASTIC'
        print fo2
        print '\n' * 1

    new_vc = recursive_set_rng_kwarg(fo2, as_apply(np.random.RandomState(1)))
    if 0:
        print '=' * 80
        print 'VECTORIZED STOCHASTIC WITH RNGS'
        print new_vc

    Nval = 10
    foo, idxs, vals = rec_eval(new_vc, memo={N: Nval})

    print 'foo[0]', foo[0]
    print 'foo[1]', foo[1]
    assert len(foo) == Nval
    if 0:  # XXX refresh these values to lock down sampler
        assert foo[0] == {
            'p0': 0.39676747423066994,
            'p1': None,
            'p2': 0.39676747423066994,
            'p3': 2.1281244479293568,
            'p4': 1,
            'p5': (3, 4, 0.39676747423066994)
        }
    assert foo[1] != foo[2]

    print idxs
    print vals['p3']
    print vals['p6']
    print idxs['p1']
    print vals['p1']
    assert len(vals['p3']) == Nval
    assert len(vals['p6']) == Nval
    assert len(idxs['p1']) < Nval
    p1d = dict(zip(idxs['p1'], vals['p1']))
    for ii, (p3v, p6v) in enumerate(zip(vals['p3'], vals['p6'])):
        if p3v == p6v == 0:
            assert ii not in idxs['p1']
        if p3v:
            assert foo[ii]['p3'] == p1d[ii]
        if p6v:
            print 'p6', foo[ii]['p6'], p1d[ii]
            assert foo[ii]['p6'] == p1d[ii]