Beispiel #1
0
    def test_from_magnetic_spacegroup(self):

        # AFM MnF
        s1 = Structure.from_magnetic_spacegroup("P4_2'/mnm'", Lattice.tetragonal(4.87, 3.30),
                                                ["Mn", "F"],
                                                [[0, 0, 0],
                                                 [0.30, 0.30, 0.00]],
                                                {'magmom': [4, 0]})

        self.assertEqual(s1.formula, "Mn2 F4")
        self.assertEqual(sum(map(float, s1.site_properties['magmom'])), 0)
        self.assertEqual(max(map(float, s1.site_properties['magmom'])), 4)
        self.assertEqual(min(map(float, s1.site_properties['magmom'])), -4)

        # AFM LaMnO3, ordered on (001) planes
        s2 = Structure.from_magnetic_spacegroup("Pn'ma'", Lattice.orthorhombic(5.75, 7.66, 5.53),
                                                ["La", "Mn", "O", "O"],
                                                [[0.05, 0.25, 0.99],
                                                 [0.00, 0.00, 0.50],
                                                 [0.48, 0.25, 0.08],
                                                 [0.31, 0.04, 0.72]],
                                                {'magmom': [0, Magmom([4, 0, 0]), 0, 0]})

        self.assertEqual(s2.formula, "La4 Mn4 O12")
        self.assertEqual(sum(map(float, s2.site_properties['magmom'])), 0)
        self.assertEqual(max(map(float, s2.site_properties['magmom'])), 4)
        self.assertEqual(min(map(float, s2.site_properties['magmom'])), -4)
Beispiel #2
0
 def test_lattice_2_lmpbox(self):
     matrix = np.diag(np.random.randint(5, 14, size=(3,))) + np.random.rand(3, 3) * 0.2 - 0.1
     init_latt = Lattice(matrix)
     frac_coords = np.random.rand(10, 3)
     init_structure = Structure(init_latt, ["H"] * 10, frac_coords)
     origin = np.random.rand(3) * 10 - 5
     box, symmop = lattice_2_lmpbox(lattice=init_latt, origin=origin)
     boxed_latt = box.to_lattice()
     np.testing.assert_array_almost_equal(init_latt.abc, boxed_latt.abc)
     np.testing.assert_array_almost_equal(init_latt.angles, boxed_latt.angles)
     cart_coords = symmop.operate_multi(init_structure.cart_coords) - origin
     boxed_structure = Structure(boxed_latt, ["H"] * 10, cart_coords, coords_are_cartesian=True)
     np.testing.assert_array_almost_equal(boxed_structure.frac_coords, frac_coords)
     tetra_latt = Lattice.tetragonal(5, 5)
     tetra_box, _ = lattice_2_lmpbox(tetra_latt)
     self.assertIsNone(tetra_box.tilt)
     ortho_latt = Lattice.orthorhombic(5, 5, 5)
     ortho_box, _ = lattice_2_lmpbox(ortho_latt)
     self.assertIsNone(ortho_box.tilt)
     rot_tetra_latt = Lattice([[5, 0, 0], [0, 2, 2], [0, -2, 2]])
     _, rotop = lattice_2_lmpbox(rot_tetra_latt)
     np.testing.assert_array_almost_equal(
         rotop.rotation_matrix,
         [
             [1, 0, 0],
             [0, 2 ** 0.5 / 2, 2 ** 0.5 / 2],
             [0, -(2 ** 0.5) / 2, 2 ** 0.5 / 2],
         ],
     )
Beispiel #3
0
 def test_is_compatible(self):
     cubic = Lattice.cubic(1)
     hexagonal = Lattice.hexagonal(1, 2)
     rhom = Lattice.rhombohedral(3, 80)
     tet = Lattice.tetragonal(1, 2)
     ortho = Lattice.orthorhombic(1, 2, 3)
     msg = MagneticSpaceGroup("Fm-3m")
     self.assertTrue(msg.is_compatible(cubic))
     self.assertFalse(msg.is_compatible(hexagonal))
     msg = MagneticSpaceGroup("Pnma")
     self.assertTrue(msg.is_compatible(cubic))
     self.assertTrue(msg.is_compatible(tet))
     self.assertTrue(msg.is_compatible(ortho))
     self.assertFalse(msg.is_compatible(rhom))
     self.assertFalse(msg.is_compatible(hexagonal))
     msg = MagneticSpaceGroup("P2/c")
     self.assertTrue(msg.is_compatible(cubic))
     self.assertTrue(msg.is_compatible(tet))
     self.assertTrue(msg.is_compatible(ortho))
     self.assertFalse(msg.is_compatible(rhom))
     self.assertFalse(msg.is_compatible(hexagonal))
     msg = MagneticSpaceGroup("P-1")
     self.assertTrue(msg.is_compatible(cubic))
     self.assertTrue(msg.is_compatible(tet))
     self.assertTrue(msg.is_compatible(ortho))
     self.assertTrue(msg.is_compatible(rhom))
     self.assertTrue(msg.is_compatible(hexagonal))
Beispiel #4
0
    def test_get_xrd_data(self):
        a = 4.209
        latt = Lattice.cubic(a)
        structure = Structure(latt, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
        c = XRDCalculator()
        data = c.get_xrd_data(structure, two_theta_range=(0, 90))
        #Check the first two peaks
        self.assertAlmostEqual(data[0][0], 21.107738329639844)
        self.assertAlmostEqual(data[0][1], 36.483184003748946)
        self.assertEqual(data[0][2], {(1, 0, 0): 6})
        self.assertAlmostEqual(data[0][3], 4.2089999999999996)
        self.assertAlmostEqual(data[1][0], 30.024695921112777)
        self.assertAlmostEqual(data[1][1], 100)
        self.assertEqual(data[1][2], {(1, 1, 0): 12})
        self.assertAlmostEqual(data[1][3], 2.976212442014178)

        s = read_structure(os.path.join(test_dir, "LiFePO4.cif"))
        data = c.get_xrd_data(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(data[1][0], 17.03504233621785)
        self.assertAlmostEqual(data[1][1], 50.400928948337075)

        s = read_structure(os.path.join(test_dir, "Li10GeP2S12.cif"))
        data = c.get_xrd_data(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(data[1][0], 14.058274883353876)
        self.assertAlmostEqual(data[1][1], 4.4111123641667671)

        # Test a hexagonal structure.
        s = read_structure(os.path.join(test_dir, "Graphite.cif"),
                           primitive=False)
        data = c.get_xrd_data(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(data[0][0], 7.929279053132362)
        self.assertAlmostEqual(data[0][1], 100)
        self.assertAlmostEqual(len(list(data[0][2].keys())[0]), 4)

        #Add test case with different lengths of coefficients.
        #Also test d_hkl.
        coords = [[0.25, 0.25, 0.173], [0.75, 0.75, 0.827], [0.75, 0.25, 0],
                  [0.25, 0.75, 0], [0.25, 0.25, 0.676], [0.75, 0.75, 0.324]]
        sp = ["Si", "Si", "Ru", "Ru", "Pr", "Pr"]
        s = Structure(Lattice.tetragonal(4.192, 6.88), sp, coords)
        data = c.get_xrd_data(s)
        self.assertAlmostEqual(data[0][0], 12.86727341476735)
        self.assertAlmostEqual(data[0][1], 31.448239816769796)
        self.assertAlmostEqual(data[0][3], 6.88)
        self.assertEqual(len(data), 42)
        data = c.get_xrd_data(s, two_theta_range=[0, 60])
        self.assertEqual(len(data), 18)

        #Test with and without Debye-Waller factor
        tungsten = Structure(Lattice.cubic(3.1653), ["W"] * 2,
                             [[0, 0, 0], [0.5, 0.5, 0.5]])
        data = c.get_xrd_data(tungsten, scaled=False)
        self.assertAlmostEqual(data[0][0], 40.294828554672264)
        self.assertAlmostEqual(data[0][1], 2414237.5633093244)
        self.assertAlmostEqual(data[0][3], 2.2382050944897789)
        c = XRDCalculator(debye_waller_factors={"W": 0.1526})
        data = c.get_xrd_data(tungsten, scaled=False)
        self.assertAlmostEqual(data[0][0], 40.294828554672264)
        self.assertAlmostEqual(data[0][1], 2377745.2296686019)
        self.assertAlmostEqual(data[0][3], 2.2382050944897789)
Beispiel #5
0
 def test_primitive_structure_volume_check(self):
     l = Lattice.tetragonal(10, 30)
     coords = [[0.5, 0.8, 0], [0.5, 0.2, 0], [0.5, 0.8, 0.333],
               [0.5, 0.5, 0.333], [0.5, 0.5, 0.666], [0.5, 0.2, 0.666]]
     s = IStructure(l, ["Ag"] * 6, coords)
     sprim = s.get_primitive_structure(tolerance=0.1)
     self.assertEqual(len(sprim), 6)
Beispiel #6
0
    def test_from_spacegroup(self):
        s1 = Structure.from_spacegroup("Fm-3m", Lattice.cubic(3), ["Li", "O"],
                                       [[0.25, 0.25, 0.25], [0, 0, 0]])
        self.assertEqual(s1.formula, "Li8 O4")
        s2 = Structure.from_spacegroup(225, Lattice.cubic(3), ["Li", "O"],
                                       [[0.25, 0.25, 0.25], [0, 0, 0]])
        self.assertEqual(s1, s2)

        s2 = Structure.from_spacegroup(225,
                                       Lattice.cubic(3), ["Li", "O"],
                                       [[0.25, 0.25, 0.25], [0, 0, 0]],
                                       site_properties={"charge": [1, -2]})
        self.assertEqual(sum(s2.site_properties["charge"]), 0)

        s = Structure.from_spacegroup("Pm-3m", Lattice.cubic(3), ["Cs", "Cl"],
                                      [[0, 0, 0], [0.5, 0.5, 0.5]])
        self.assertEqual(s.formula, "Cs1 Cl1")

        self.assertRaises(ValueError, Structure.from_spacegroup, "Pm-3m",
                          Lattice.tetragonal(1, 3), ["Cs", "Cl"],
                          [[0, 0, 0], [0.5, 0.5, 0.5]])

        self.assertRaises(ValueError, Structure.from_spacegroup, "Pm-3m",
                          Lattice.cubic(3), ["Cs"],
                          [[0, 0, 0], [0.5, 0.5, 0.5]])
    def test_get_xrd_data(self):
        a = 4.209
        latt = Lattice.cubic(a)
        structure = Structure(latt, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
        c = XRDCalculator()
        data = c.get_xrd_data(structure, two_theta_range=(0, 90))
        #Check the first two peaks
        self.assertAlmostEqual(data[0][0], 21.107738329639844)
        self.assertAlmostEqual(data[0][1], 36.483184003748946)
        self.assertEqual(data[0][2], {(1, 0, 0): 6})
        self.assertAlmostEqual(data[0][3], 4.2089999999999996)
        self.assertAlmostEqual(data[1][0], 30.024695921112777)
        self.assertAlmostEqual(data[1][1], 100)
        self.assertEqual(data[1][2], {(1, 1, 0): 12})
        self.assertAlmostEqual(data[1][3], 2.976212442014178)

        s = read_structure(os.path.join(test_dir, "LiFePO4.cif"))
        data = c.get_xrd_data(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(data[1][0], 17.03504233621785)
        self.assertAlmostEqual(data[1][1], 50.400928948337075)

        s = read_structure(os.path.join(test_dir, "Li10GeP2S12.cif"))
        data = c.get_xrd_data(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(data[1][0], 14.058274883353876)
        self.assertAlmostEqual(data[1][1], 4.4111123641667671)

        # Test a hexagonal structure.
        s = read_structure(os.path.join(test_dir, "Graphite.cif"),
                           primitive=False)
        data = c.get_xrd_data(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(data[0][0], 7.929279053132362)
        self.assertAlmostEqual(data[0][1], 100)
        self.assertAlmostEqual(len(list(data[0][2].keys())[0]), 4)

        #Add test case with different lengths of coefficients.
        #Also test d_hkl.
        coords = [[0.25, 0.25, 0.173], [0.75, 0.75, 0.827], [0.75, 0.25, 0],
                  [0.25, 0.75, 0], [0.25, 0.25, 0.676], [0.75, 0.75, 0.324]]
        sp = ["Si", "Si", "Ru", "Ru", "Pr", "Pr"]
        s = Structure(Lattice.tetragonal(4.192, 6.88), sp, coords)
        data = c.get_xrd_data(s)
        self.assertAlmostEqual(data[0][0], 12.86727341476735)
        self.assertAlmostEqual(data[0][1], 31.448239816769796)
        self.assertAlmostEqual(data[0][3], 6.88)
        self.assertEqual(len(data), 42)
        data = c.get_xrd_data(s, two_theta_range=[0, 60])
        self.assertEqual(len(data), 18)

        #Test with and without Debye-Waller factor
        tungsten = Structure(Lattice.cubic(3.1653), ["W"] * 2,
                             [[0, 0, 0], [0.5, 0.5, 0.5]])
        data = c.get_xrd_data(tungsten, scaled=False)
        self.assertAlmostEqual(data[0][0], 40.294828554672264)
        self.assertAlmostEqual(data[0][1], 2414237.5633093244)
        self.assertAlmostEqual(data[0][3], 2.2382050944897789)
        c = XRDCalculator(debye_waller_factors={"W": 0.1526})
        data = c.get_xrd_data(tungsten, scaled=False)
        self.assertAlmostEqual(data[0][0], 40.294828554672264)
        self.assertAlmostEqual(data[0][1], 2377745.2296686019)
        self.assertAlmostEqual(data[0][3], 2.2382050944897789)
Beispiel #8
0
    def test_get_pattern(self):
        s = self.get_structure("CsCl")
        c = XRDCalculator()
        xrd = c.get_pattern(s, two_theta_range=(0, 90))
        self.assertTrue(xrd.to_json())  # Test MSONAble property
        # Check the first two peaks
        self.assertAlmostEqual(xrd.x[0], 21.107738329639844)
        self.assertAlmostEqual(xrd.y[0], 36.483184003748946)
        self.assertEqual(xrd.hkls[0], [{'hkl': (1, 0, 0), 'multiplicity': 6}])
        self.assertAlmostEqual(xrd.d_hkls[0], 4.2089999999999996)
        self.assertAlmostEqual(xrd.x[1], 30.024695921112777)
        self.assertAlmostEqual(xrd.y[1], 100)
        self.assertEqual(xrd.hkls[1], [{"hkl": (1, 1, 0), "multiplicity": 12}])
        self.assertAlmostEqual(xrd.d_hkls[1], 2.976212442014178)

        s = self.get_structure("LiFePO4")
        xrd = c.get_pattern(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(xrd.x[1], 17.03504233621785)
        self.assertAlmostEqual(xrd.y[1], 50.400928948337075)

        s = self.get_structure("Li10GeP2S12")
        xrd = c.get_pattern(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(xrd.x[1], 14.058274883353876)
        self.assertAlmostEqual(xrd.y[1], 4.4111123641667671)

        # Test a hexagonal structure.
        s = self.get_structure("Graphite")

        xrd = c.get_pattern(s, two_theta_range=(0, 90))
        self.assertAlmostEqual(xrd.x[0], 26.21057350859598)
        self.assertAlmostEqual(xrd.y[0], 100)
        self.assertAlmostEqual(len(xrd.hkls[0][0]["hkl"]), 4)

        # Add test case with different lengths of coefficients.
        # Also test d_hkl.
        coords = [[0.25, 0.25, 0.173], [0.75, 0.75, 0.827], [0.75, 0.25, 0],
                  [0.25, 0.75, 0], [0.25, 0.25, 0.676], [0.75, 0.75, 0.324]]
        sp = ["Si", "Si", "Ru", "Ru", "Pr", "Pr"]
        s = Structure(Lattice.tetragonal(4.192, 6.88), sp, coords)
        xrd = c.get_pattern(s)
        self.assertAlmostEqual(xrd.x[0], 12.86727341476735)
        self.assertAlmostEqual(xrd.y[0], 31.448239816769796)
        self.assertAlmostEqual(xrd.d_hkls[0], 6.88)
        self.assertEqual(len(xrd), 42)
        xrd = c.get_pattern(s, two_theta_range=[0, 60])
        self.assertEqual(len(xrd), 18)

        # Test with and without Debye-Waller factor
        tungsten = Structure(Lattice.cubic(3.1653), ["W"] * 2,
                             [[0, 0, 0], [0.5, 0.5, 0.5]])
        xrd = c.get_pattern(tungsten, scaled=False)
        self.assertAlmostEqual(xrd.x[0], 40.294828554672264)
        self.assertAlmostEqual(xrd.y[0], 2414237.5633093244)
        self.assertAlmostEqual(xrd.d_hkls[0], 2.2382050944897789)
        c = XRDCalculator(debye_waller_factors={"W": 0.1526})
        xrd = c.get_pattern(tungsten, scaled=False)
        self.assertAlmostEqual(xrd.x[0], 40.294828554672264)
        self.assertAlmostEqual(xrd.y[0], 2377745.2296686019)
        self.assertAlmostEqual(xrd.d_hkls[0], 2.2382050944897789)
        c.get_plot(tungsten).show()
Beispiel #9
0
    def test_kpath_generation(self):
        triclinic = [1, 2]
        monoclinic = range(3, 16)
        orthorhombic = range(16, 75)
        tetragonal = range(75, 143)
        rhombohedral = range(143, 168)
        hexagonal = range(168, 195)
        cubic = range(195, 231)

        species = ['K', 'La', 'Ti']
        coords = [[.345, 5, .77298], [.1345, 5.1, .77298], [.7, .8, .9]]
        for i in range(230):
            sg_num = i + 1
            if sg_num in triclinic:
                lattice = Lattice([[3.0233057319441246, 0, 0], [0, 7.9850357844548681, 0], [0, 0, 8.1136762279561818]])
            elif sg_num in monoclinic:
                lattice = Lattice.monoclinic(2, 9, 1, 99)
            elif sg_num in orthorhombic:
                lattice = Lattice.orthorhombic(2, 9, 1)
            elif sg_num in tetragonal:
                lattice = Lattice.tetragonal(2, 9)
            elif sg_num in rhombohedral:
                lattice = Lattice.hexagonal(2, 95)
            elif sg_num in hexagonal:
                lattice = Lattice.hexagonal(2, 9)
            elif sg_num in cubic:
                lattice = Lattice.cubic(2)

            struct = Structure.from_spacegroup(sg_num, lattice, species, coords)
            kpath = HighSymmKpath(struct)  # Throws error if something doesn't work, causing test to fail.

        struct_file_path = os.path.join(test_dir_structs, 'ICSD_170.cif')
        struct = Structure.from_file(struct_file_path)
        hkp = HighSymmKpath(struct)
        self.assertEqual(hkp.name, 'MCLC5')
Beispiel #10
0
 def test_selling_dist(self):
     # verification process described here: https://github.com/materialsproject/pymatgen/pull/1888#issuecomment-818072164
     np.testing.assert_(Lattice.selling_dist(Lattice.cubic(5), Lattice.cubic(5)) == 0)
     hex_lattice = Lattice.hexagonal(5, 8)
     triclinic_lattice = Lattice.from_parameters(4, 10, 11, 100, 110, 80)
     np.testing.assert_allclose(Lattice.selling_dist(hex_lattice, triclinic_lattice), 76, rtol=0.1)
     np.testing.assert_allclose(
         Lattice.selling_dist(Lattice.tetragonal(10, 12), Lattice.tetragonal(10.1, 11.9)),
         3.7,
         rtol=0.1,
     )
     np.testing.assert_allclose(
         Lattice.selling_dist(Lattice.cubic(5), Lattice.from_parameters(8, 10, 12, 80, 90, 95)),
         115.6,
         rtol=0.1,
     )
Beispiel #11
0
 def test_kpath_generation(self):
     triclinic = [1, 2]
     monoclinic = range(3, 16)
     orthorhombic = range(16, 75)
     tetragonal = range(75, 143)
     rhombohedral = range(143, 168)
     hexagonal = range(168, 195)
     cubic = range(195, 231)
     
     species = ['K', 'La', 'Ti']
     coords = [[.345, 5, .77298], [.1345, 5.1, .77298], [.7, .8, .9]]
     for i in range(230):
         sg_num = i + 1
         if sg_num in triclinic:
             lattice = Lattice([[3.0233057319441246,0,0], [0,7.9850357844548681,0], [0,0,8.1136762279561818]])
         elif sg_num in monoclinic:
             lattice = Lattice.monoclinic(2, 9, 1, 99)
         elif sg_num in orthorhombic:
             lattice = Lattice.orthorhombic(2, 9, 1)
         elif sg_num in tetragonal:
             lattice = Lattice.tetragonal(2, 9)
         elif sg_num in rhombohedral:
             lattice = Lattice.hexagonal(2, 95)
         elif sg_num in hexagonal:
             lattice = Lattice.hexagonal(2, 9)
         elif sg_num in cubic:
             lattice = Lattice.cubic(2)
     
         struct = Structure.from_spacegroup(sg_num, lattice, species, coords)
         kpath = HighSymmKpath(struct) #Throws error if something doesn't work, causing test to fail.
Beispiel #12
0
 def test_is_compatible(self):
     cubic = Lattice.cubic(1)
     hexagonal = Lattice.hexagonal(1, 2)
     rhom = Lattice.rhombohedral(3, 80)
     tet = Lattice.tetragonal(1, 2)
     ortho = Lattice.orthorhombic(1, 2, 3)
     sg = SpaceGroup("Fm-3m")
     self.assertTrue(sg.is_compatible(cubic))
     self.assertFalse(sg.is_compatible(hexagonal))
     sg = SpaceGroup("R-3mH")
     self.assertFalse(sg.is_compatible(cubic))
     self.assertTrue(sg.is_compatible(hexagonal))
     sg = SpaceGroup("R-3m")
     self.assertTrue(sg.is_compatible(cubic))
     self.assertTrue(sg.is_compatible(rhom))
     self.assertFalse(sg.is_compatible(hexagonal))
     sg = SpaceGroup("Pnma")
     self.assertTrue(sg.is_compatible(cubic))
     self.assertTrue(sg.is_compatible(tet))
     self.assertTrue(sg.is_compatible(ortho))
     self.assertFalse(sg.is_compatible(rhom))
     self.assertFalse(sg.is_compatible(hexagonal))
     sg = SpaceGroup("P12/c1")
     self.assertTrue(sg.is_compatible(cubic))
     self.assertTrue(sg.is_compatible(tet))
     self.assertTrue(sg.is_compatible(ortho))
     self.assertFalse(sg.is_compatible(rhom))
     self.assertFalse(sg.is_compatible(hexagonal))
     sg = SpaceGroup("P-1")
     self.assertTrue(sg.is_compatible(cubic))
     self.assertTrue(sg.is_compatible(tet))
     self.assertTrue(sg.is_compatible(ortho))
     self.assertTrue(sg.is_compatible(rhom))
     self.assertTrue(sg.is_compatible(hexagonal))
Beispiel #13
0
    def test_kpath_generation(self):
        triclinic = [1, 2]
        monoclinic = range(3, 16)
        orthorhombic = range(16, 75)
        tetragonal = range(75, 143)
        rhombohedral = range(143, 168)
        hexagonal = range(168, 195)
        cubic = range(195, 231)

        species = ["K", "La", "Ti"]
        coords = [[0.345, 5, 0.77298], [0.1345, 5.1, 0.77298], [0.7, 0.8, 0.9]]
        for i in range(230):
            sg_num = i + 1
            if sg_num in triclinic:
                lattice = Lattice(
                    [[3.0233057319441246, 1, 0], [0, 7.9850357844548681, 1], [0, 1.2, 8.1136762279561818]]
                )
            elif sg_num in monoclinic:
                lattice = Lattice.monoclinic(2, 9, 1, 99)
            elif sg_num in orthorhombic:
                lattice = Lattice.orthorhombic(2, 9, 1)
            elif sg_num in tetragonal:
                lattice = Lattice.tetragonal(2, 9)
            elif sg_num in rhombohedral:
                lattice = Lattice.hexagonal(2, 95)
            elif sg_num in hexagonal:
                lattice = Lattice.hexagonal(2, 9)
            elif sg_num in cubic:
                lattice = Lattice.cubic(2)

            struct = Structure.from_spacegroup(sg_num, lattice, species, coords)
            kpath = KPathSeek(struct)  # Throws error if something doesn't work, causing test to fail.
Beispiel #14
0
 def test_primitive_structure_volume_check(self):
     l = Lattice.tetragonal(10, 30)
     coords = [[0.5, 0.8, 0], [0.5, 0.2, 0],
               [0.5, 0.8, 0.333], [0.5, 0.5, 0.333],
               [0.5, 0.5, 0.666], [0.5, 0.2, 0.666]]
     s = IStructure(l, ["Ag"] * 6, coords)
     sprim = s.get_primitive_structure(tolerance=0.1)
     self.assertEqual(len(sprim), 6)
Beispiel #15
0
    def test_sulfide_type(self):
        # NaS2 -> polysulfide
        latt = Lattice.tetragonal(9.59650, 11.78850)
        species = ["Na"] * 2 + ["S"] * 2
        coords = [
            [0.00000, 0.00000, 0.17000],
            [0.27600, 0.25000, 0.12500],
            [0.03400, 0.25000, 0.29600],
            [0.14700, 0.11600, 0.40000],
        ]
        struct = Structure.from_spacegroup(122, latt, species, coords)
        self.assertEqual(sulfide_type(struct), "polysulfide")

        # NaCl type NaS -> sulfide
        latt = Lattice.cubic(5.75)
        species = ["Na", "S"]
        coords = [[0.00000, 0.00000, 0.00000], [0.50000, 0.50000, 0.50000]]
        struct = Structure.from_spacegroup(225, latt, species, coords)
        self.assertEqual(sulfide_type(struct), "sulfide")

        # Na2S2O3 -> None (sulfate)
        latt = Lattice.monoclinic(6.40100, 8.10000, 8.47400, 96.8800)
        species = ["Na"] * 2 + ["S"] * 2 + ["O"] * 3
        coords = [
            [0.29706, 0.62396, 0.08575],
            [0.37673, 0.30411, 0.45416],
            [0.52324, 0.10651, 0.21126],
            [0.29660, -0.04671, 0.26607],
            [0.17577, 0.03720, 0.38049],
            [0.38604, -0.20144, 0.33624],
            [0.16248, -0.08546, 0.11608],
        ]
        struct = Structure.from_spacegroup(14, latt, species, coords)
        self.assertEqual(sulfide_type(struct), None)

        # Na3PS3O -> sulfide
        latt = Lattice.orthorhombic(9.51050, 11.54630, 5.93230)
        species = ["Na"] * 2 + ["S"] * 2 + ["P", "O"]
        coords = [
            [0.19920, 0.11580, 0.24950],
            [0.00000, 0.36840, 0.29380],
            [0.32210, 0.36730, 0.22530],
            [0.50000, 0.11910, 0.27210],
            [0.50000, 0.29400, 0.35500],
            [0.50000, 0.30300, 0.61140],
        ]
        struct = Structure.from_spacegroup(36, latt, species, coords)
        self.assertEqual(sulfide_type(struct), "sulfide")

        # test for unphysical cells
        struct.scale_lattice(struct.volume * 10)
        self.assertEqual(sulfide_type(struct), "sulfide")
Beispiel #16
0
    def setUp(self):
        self.lattice = Lattice.cubic(10.0)
        self.cubic = self.lattice
        self.tetragonal = Lattice.tetragonal(10, 20)
        self.orthorhombic = Lattice.orthorhombic(10, 20, 30)
        self.monoclinic = Lattice.monoclinic(10, 20, 30, 66)
        self.hexagonal = Lattice.hexagonal(10, 20)
        self.rhombohedral = Lattice.rhombohedral(10, 77)

        family_names = ["cubic", "tetragonal", "orthorhombic", "monoclinic",
                        "hexagonal", "rhombohedral"]

        self.families = {}
        for name in family_names:
            self.families[name] = getattr(self, name)
Beispiel #17
0
    def setUp(self):
        self.lattice = Lattice.cubic(10.0)
        self.cubic = self.lattice
        self.tetragonal = Lattice.tetragonal(10, 20)
        self.orthorhombic = Lattice.orthorhombic(10, 20, 30)
        self.monoclinic = Lattice.monoclinic(10, 20, 30, 66)
        self.hexagonal = Lattice.hexagonal(10, 20)
        self.rhombohedral = Lattice.rhombohedral(10, 77)

        family_names = ["cubic", "tetragonal", "orthorhombic", "monoclinic",
                        "hexagonal", "rhombohedral"]

        self.families = {}
        for name in family_names:
            self.families[name] = getattr(self, name)
Beispiel #18
0
 def test_selling_vector(self):
     a1 = 10
     np.testing.assert_array_almost_equal(
         Lattice.cubic(a1).selling_vector.round(4),
         np.array([0, 0, 0, -(a1**2), -(a1**2), -(a1**2)]),
     )
     a2, c2 = 5, 8
     np.testing.assert_array_almost_equal(
         Lattice.tetragonal(a2, c2).selling_vector.round(4),
         np.array([0, 0, 0, -(a2**2), -(a2**2), -(c2**2)]),
     )
     a3, b3, c3 = 4, 6, 7
     np.testing.assert_array_almost_equal(
         Lattice.orthorhombic(a3, b3, c3).selling_vector.round(4),
         np.array([0, 0, 0, -(a3**2), -(b3**2), -(c3**2)]),
     )
Beispiel #19
0
    def test_is_compatible(self):
        cubic = Lattice.cubic(1)
        hexagonal = Lattice.hexagonal(1, 2)
        rhom = Lattice.rhombohedral(3, 80)
        tet = Lattice.tetragonal(1, 2)
        ortho = Lattice.orthorhombic(1, 2, 3)
        sg = SpaceGroup("Fm-3m")
        self.assertTrue(sg.is_compatible(cubic))
        self.assertFalse(sg.is_compatible(hexagonal))
        sg = SpaceGroup("R-3m:H")
        self.assertFalse(sg.is_compatible(cubic))
        self.assertTrue(sg.is_compatible(hexagonal))
        sg = SpaceGroup("R-3m:R")
        self.assertTrue(sg.is_compatible(cubic))
        self.assertTrue(sg.is_compatible(rhom))
        self.assertFalse(sg.is_compatible(hexagonal))
        sg = SpaceGroup("Pnma")
        self.assertTrue(sg.is_compatible(cubic))
        self.assertTrue(sg.is_compatible(tet))
        self.assertTrue(sg.is_compatible(ortho))
        self.assertFalse(sg.is_compatible(rhom))
        self.assertFalse(sg.is_compatible(hexagonal))
        sg = SpaceGroup("P12/c1")
        self.assertTrue(sg.is_compatible(cubic))
        self.assertTrue(sg.is_compatible(tet))
        self.assertTrue(sg.is_compatible(ortho))
        self.assertFalse(sg.is_compatible(rhom))
        self.assertFalse(sg.is_compatible(hexagonal))
        sg = SpaceGroup("P-1")
        self.assertTrue(sg.is_compatible(cubic))
        self.assertTrue(sg.is_compatible(tet))
        self.assertTrue(sg.is_compatible(ortho))
        self.assertTrue(sg.is_compatible(rhom))
        self.assertTrue(sg.is_compatible(hexagonal))
        sg = SpaceGroup("Pmmn:2")
        self.assertTrue(sg.is_compatible(cubic))
        self.assertTrue(sg.is_compatible(tet))
        self.assertTrue(sg.is_compatible(ortho))
        self.assertFalse(sg.is_compatible(rhom))
        self.assertFalse(sg.is_compatible(hexagonal))

        sg = SpaceGroup.from_int_number(165)
        self.assertFalse(sg.is_compatible(cubic))
        self.assertFalse(sg.is_compatible(tet))
        self.assertFalse(sg.is_compatible(ortho))
        self.assertFalse(sg.is_compatible(rhom))
        self.assertTrue(sg.is_compatible(hexagonal))
Beispiel #20
0
    def test_from_spacegroup(self):
        s1 = Structure.from_spacegroup("Fm-3m", Lattice.cubic(3), ["Li", "O"],
                                       [[0.25, 0.25, 0.25], [0, 0, 0]])
        self.assertEqual(s1.formula, "Li8 O4")
        s2 = Structure.from_spacegroup(225, Lattice.cubic(3), ["Li", "O"],
                                       [[0.25, 0.25, 0.25], [0, 0, 0]])
        self.assertEqual(s1, s2)

        s2 = Structure.from_spacegroup(225, Lattice.cubic(3), ["Li", "O"],
                                       [[0.25, 0.25, 0.25], [0, 0, 0]],
                                       site_properties={"charge": [1, -2]})
        self.assertEqual(sum(s2.site_properties["charge"]), 0)

        s = Structure.from_spacegroup("Pm-3m", Lattice.cubic(3), ["Cs", "Cl"],
                                      [[0, 0, 0], [0.5, 0.5, 0.5]])
        self.assertEqual(s.formula, "Cs1 Cl1")

        self.assertRaises(ValueError, Structure.from_spacegroup,
                          "Pm-3m", Lattice.tetragonal(1, 3), ["Cs", "Cl"],
                          [[0, 0, 0], [0.5, 0.5, 0.5]])
Beispiel #21
0
    def test_from_magnetic_spacegroup(self):

        # AFM MnF
        s1 = Structure.from_magnetic_spacegroup(
            "P4_2'/mnm'", Lattice.tetragonal(4.87, 3.30), ["Mn", "F"],
            [[0, 0, 0], [0.30, 0.30, 0.00]], {'magmom': [4, 0]})

        self.assertEqual(s1.formula, "Mn2 F4")
        self.assertEqual(sum(map(float, s1.site_properties['magmom'])), 0)
        self.assertEqual(max(map(float, s1.site_properties['magmom'])), 4)
        self.assertEqual(min(map(float, s1.site_properties['magmom'])), -4)

        # AFM LaMnO3, ordered on (001) planes
        s2 = Structure.from_magnetic_spacegroup(
            "Pn'ma'", Lattice.orthorhombic(5.75, 7.66,
                                           5.53), ["La", "Mn", "O", "O"],
            [[0.05, 0.25, 0.99], [0.00, 0.00, 0.50], [0.48, 0.25, 0.08],
             [0.31, 0.04, 0.72]], {'magmom': [0, Magmom([4, 0, 0]), 0, 0]})

        self.assertEqual(s2.formula, "La4 Mn4 O12")
        self.assertEqual(sum(map(float, s2.site_properties['magmom'])), 0)
        self.assertEqual(max(map(float, s2.site_properties['magmom'])), 4)
        self.assertEqual(min(map(float, s2.site_properties['magmom'])), -4)
Beispiel #22
0
    def get_conventional_standard_structure(
            self, international_monoclinic=True):
        """
        Gives a structure with a conventional cell according to certain
        standards. The standards are defined in Setyawan, W., & Curtarolo,
        S. (2010). High-throughput electronic band structure calculations:
        Challenges and tools. Computational Materials Science,
        49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010
        They basically enforce as much as possible
        norm(a1)<norm(a2)<norm(a3)

        Returns:
            The structure in a conventional standardized cell
        """
        tol = 1e-5
        struct = self.get_refined_structure()
        latt = struct.lattice
        latt_type = self.get_lattice_type()
        sorted_lengths = sorted(latt.abc)
        sorted_dic = sorted([{'vec': latt.matrix[i],
                              'length': latt.abc[i],
                              'orig_index': i} for i in [0, 1, 2]],
                            key=lambda k: k['length'])

        if latt_type in ("orthorhombic", "cubic"):
            #you want to keep the c axis where it is
            #to keep the C- settings
            transf = np.zeros(shape=(3, 3))
            if self.get_spacegroup_symbol().startswith("C"):
                transf[2] = [0, 0, 1]
                a, b = sorted(latt.abc[:2])
                sorted_dic = sorted([{'vec': latt.matrix[i],
                                      'length': latt.abc[i],
                                      'orig_index': i} for i in [0, 1]],
                                    key=lambda k: k['length'])
                for i in range(2):
                    transf[i][sorted_dic[i]['orig_index']] = 1
                c = latt.abc[2]
            else:
                for i in range(len(sorted_dic)):
                    transf[i][sorted_dic[i]['orig_index']] = 1
                a, b, c = sorted_lengths
            latt = Lattice.orthorhombic(a, b, c)

        elif latt_type == "tetragonal":
            #find the "a" vectors
            #it is basically the vector repeated two times
            transf = np.zeros(shape=(3, 3))
            a, b, c = sorted_lengths
            for d in range(len(sorted_dic)):
                transf[d][sorted_dic[d]['orig_index']] = 1

            if abs(b - c) < tol:
                a, c = c, a
                transf = np.dot([[0, 0, 1], [0, 1, 0], [1, 0, 0]], transf)
            latt = Lattice.tetragonal(a, c)
        elif latt_type in ("hexagonal", "rhombohedral"):
            #for the conventional cell representation,
            #we allways show the rhombohedral lattices as hexagonal

            #check first if we have the refined structure shows a rhombohedral
            #cell
            #if so, make a supercell
            a, b, c = latt.abc
            if np.all(np.abs([a - b, c - b, a - c]) < 0.001):
                struct.make_supercell(((1, -1, 0), (0, 1, -1), (1, 1, 1)))
                a, b, c = sorted(struct.lattice.abc)

            if abs(b - c) < 0.001:
                a, c = c, a
            new_matrix = [[a / 2, -a * math.sqrt(3) / 2, 0],
                          [a / 2, a * math.sqrt(3) / 2, 0],
                          [0, 0, c]]
            latt = Lattice(new_matrix)
            transf = np.eye(3, 3)

        elif latt_type == "monoclinic":
            #you want to keep the c axis where it is
            #to keep the C- settings

            if self.get_spacegroup().int_symbol.startswith("C"):
                transf = np.zeros(shape=(3, 3))
                transf[2] = [0, 0, 1]
                sorted_dic = sorted([{'vec': latt.matrix[i],
                                      'length': latt.abc[i],
                                      'orig_index': i} for i in [0, 1]],
                                    key=lambda k: k['length'])
                a = sorted_dic[0]['length']
                b = sorted_dic[1]['length']
                c = latt.abc[2]
                new_matrix = None
                for t in itertools.permutations(list(range(2)), 2):
                    m = latt.matrix
                    landang = Lattice(
                        [m[t[0]], m[t[1]], m[2]]).lengths_and_angles
                    if landang[1][0] > 90:
                        #if the angle is > 90 we invert a and b to get
                        #an angle < 90
                        landang = Lattice(
                            [-m[t[0]], -m[t[1]], m[2]]).lengths_and_angles
                        transf = np.zeros(shape=(3, 3))
                        transf[0][t[0]] = -1
                        transf[1][t[1]] = -1
                        transf[2][2] = 1
                        a, b, c = landang[0]
                        alpha = math.pi * landang[1][0] / 180
                        new_matrix = [[a, 0, 0],
                                      [0, b, 0],
                                      [0, c * cos(alpha), c * sin(alpha)]]
                        continue

                    elif landang[1][0] < 90:
                        transf = np.zeros(shape=(3, 3))
                        transf[0][t[0]] = 1
                        transf[1][t[1]] = 1
                        transf[2][2] = 1
                        a, b, c = landang[0]
                        alpha = math.pi * landang[1][0] / 180
                        new_matrix = [[a, 0, 0],
                                      [0, b, 0],
                                      [0, c * cos(alpha), c * sin(alpha)]]

                if new_matrix is None:
                    #this if is to treat the case
                    #where alpha==90 (but we still have a monoclinic sg
                    new_matrix = [[a, 0, 0],
                                  [0, b, 0],
                                  [0, 0, c]]
                    transf = np.zeros(shape=(3, 3))
                    for c in range(len(sorted_dic)):
                        transf[c][sorted_dic[c]['orig_index']] = 1
            #if not C-setting
            else:
                #try all permutations of the axis
                #keep the ones with the non-90 angle=alpha
                #and b<c
                new_matrix = None
                for t in itertools.permutations(list(range(3)), 3):
                    m = latt.matrix
                    landang = Lattice(
                        [m[t[0]], m[t[1]], m[t[2]]]).lengths_and_angles
                    if landang[1][0] > 90 and landang[0][1] < landang[0][2]:
                        landang = Lattice(
                            [-m[t[0]], -m[t[1]], m[t[2]]]).lengths_and_angles
                        transf = np.zeros(shape=(3, 3))
                        transf[0][t[0]] = -1
                        transf[1][t[1]] = -1
                        transf[2][t[2]] = 1
                        a, b, c = landang[0]
                        alpha = math.pi * landang[1][0] / 180
                        new_matrix = [[a, 0, 0],
                                      [0, b, 0],
                                      [0, c * cos(alpha), c * sin(alpha)]]
                        continue
                    elif landang[1][0] < 90 and landang[0][1] < landang[0][2]:
                        transf = np.zeros(shape=(3, 3))
                        transf[0][t[0]] = 1
                        transf[1][t[1]] = 1
                        transf[2][t[2]] = 1
                        a, b, c = landang[0]
                        alpha = math.pi * landang[1][0] / 180
                        new_matrix = [[a, 0, 0],
                                      [0, b, 0],
                                      [0, c * cos(alpha), c * sin(alpha)]]
                if new_matrix is None:
                    #this if is to treat the case
                    #where alpha==90 (but we still have a monoclinic sg
                    new_matrix = [[sorted_lengths[0], 0, 0],
                                  [0, sorted_lengths[1], 0],
                                  [0, 0, sorted_lengths[2]]]
                    transf = np.zeros(shape=(3, 3))
                    for c in range(len(sorted_dic)):
                        transf[c][sorted_dic[c]['orig_index']] = 1

            if international_monoclinic:
                # The above code makes alpha the non-right angle.
                # The following will convert to proper international convention
                # that beta is the non-right angle.
                op = [[0, 1, 0], [1, 0, 0], [0, 0, -1]]
                transf = np.dot(op, transf)
                new_matrix = np.dot(op, new_matrix)
                beta = Lattice(new_matrix).beta
                if beta < 90:
                    op = [[-1, 0, 0], [0, -1, 0], [0, 0, 1]]
                    transf = np.dot(op, transf)
                    new_matrix = np.dot(op, new_matrix)

            latt = Lattice(new_matrix)

        elif latt_type == "triclinic":
            #we use a LLL Minkowski-like reduction for the triclinic cells
            struct = struct.get_reduced_structure("LLL")

            a, b, c = latt.lengths_and_angles[0]
            alpha, beta, gamma = [math.pi * i / 180
                                  for i in latt.lengths_and_angles[1]]
            new_matrix = None
            test_matrix = [[a, 0, 0],
                          [b * cos(gamma), b * sin(gamma), 0.0],
                          [c * cos(beta),
                           c * (cos(alpha) - cos(beta) * cos(gamma)) /
                           sin(gamma),
                           c * math.sqrt(sin(gamma) ** 2 - cos(alpha) ** 2
                                         - cos(beta) ** 2
                                         + 2 * cos(alpha) * cos(beta)
                                         * cos(gamma)) / sin(gamma)]]

            def is_all_acute_or_obtuse(m):
                recp_angles = np.array(Lattice(m).reciprocal_lattice.angles)
                return np.all(recp_angles <= 90) or np.all(recp_angles > 90)

            if is_all_acute_or_obtuse(test_matrix):
                transf = np.eye(3)
                new_matrix = test_matrix

            test_matrix = [[-a, 0, 0],
                           [b * cos(gamma), b * sin(gamma), 0.0],
                           [-c * cos(beta),
                            -c * (cos(alpha) - cos(beta) * cos(gamma)) /
                            sin(gamma),
                            -c * math.sqrt(sin(gamma) ** 2 - cos(alpha) ** 2
                                           - cos(beta) ** 2
                                           + 2 * cos(alpha) * cos(beta)
                                           * cos(gamma)) / sin(gamma)]]

            if is_all_acute_or_obtuse(test_matrix):
                transf = [[-1, 0, 0],
                          [0, 1, 0],
                          [0, 0, -1]]
                new_matrix = test_matrix

            test_matrix = [[-a, 0, 0],
                           [-b * cos(gamma), -b * sin(gamma), 0.0],
                           [c * cos(beta),
                            c * (cos(alpha) - cos(beta) * cos(gamma)) /
                            sin(gamma),
                            c * math.sqrt(sin(gamma) ** 2 - cos(alpha) ** 2
                                          - cos(beta) ** 2
                                          + 2 * cos(alpha) * cos(beta)
                                          * cos(gamma)) / sin(gamma)]]

            if is_all_acute_or_obtuse(test_matrix):
                transf = [[-1, 0, 0],
                          [0, -1, 0],
                          [0, 0, 1]]
                new_matrix = test_matrix

            test_matrix = [[a, 0, 0],
                           [-b * cos(gamma), -b * sin(gamma), 0.0],
                           [-c * cos(beta),
                            -c * (cos(alpha) - cos(beta) * cos(gamma)) /
                            sin(gamma),
                            -c * math.sqrt(sin(gamma) ** 2 - cos(alpha) ** 2
                                           - cos(beta) ** 2
                                           + 2 * cos(alpha) * cos(beta)
                                           * cos(gamma)) / sin(gamma)]]
            if is_all_acute_or_obtuse(test_matrix):
                transf = [[1, 0, 0],
                          [0, -1, 0],
                          [0, 0, -1]]
                new_matrix = test_matrix

            latt = Lattice(new_matrix)

        new_coords = np.dot(transf, np.transpose(struct.frac_coords)).T
        new_struct = Structure(latt, struct.species_and_occu, new_coords,
                               site_properties=struct.site_properties,
                               to_unit_cell=True)
        return new_struct.get_sorted_structure()
Beispiel #23
0
 def setUp(self):
     self.lattice = Lattice.cubic(10.0)
     self.tetragonal = Lattice.tetragonal(10, 20)
Beispiel #24
0
    def get_conventional_standard_structure(self,
                                            international_monoclinic=True):
        """
        Gives a structure with a conventional cell according to certain
        standards. The standards are defined in Setyawan, W., & Curtarolo,
        S. (2010). High-throughput electronic band structure calculations:
        Challenges and tools. Computational Materials Science,
        49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010
        They basically enforce as much as possible
        norm(a1)<norm(a2)<norm(a3)

        Returns:
            The structure in a conventional standardized cell
        """
        tol = 1e-5
        struct = self.get_refined_structure()
        latt = struct.lattice
        latt_type = self.get_lattice_type()
        sorted_lengths = sorted(latt.abc)
        sorted_dic = sorted([{
            'vec': latt.matrix[i],
            'length': latt.abc[i],
            'orig_index': i
        } for i in [0, 1, 2]],
                            key=lambda k: k['length'])

        if latt_type in ("orthorhombic", "cubic"):
            #you want to keep the c axis where it is
            #to keep the C- settings
            transf = np.zeros(shape=(3, 3))
            if self.get_spacegroup_symbol().startswith("C"):
                transf[2] = [0, 0, 1]
                a, b = sorted(latt.abc[:2])
                sorted_dic = sorted([{
                    'vec': latt.matrix[i],
                    'length': latt.abc[i],
                    'orig_index': i
                } for i in [0, 1]],
                                    key=lambda k: k['length'])
                for i in range(2):
                    transf[i][sorted_dic[i]['orig_index']] = 1
                c = latt.abc[2]
            else:
                for i in range(len(sorted_dic)):
                    transf[i][sorted_dic[i]['orig_index']] = 1
                a, b, c = sorted_lengths
            latt = Lattice.orthorhombic(a, b, c)

        elif latt_type == "tetragonal":
            #find the "a" vectors
            #it is basically the vector repeated two times
            transf = np.zeros(shape=(3, 3))
            a, b, c = sorted_lengths
            for d in range(len(sorted_dic)):
                transf[d][sorted_dic[d]['orig_index']] = 1

            if abs(b - c) < tol:
                a, c = c, a
                transf = np.dot([[0, 0, 1], [0, 1, 0], [1, 0, 0]], transf)
            latt = Lattice.tetragonal(a, c)
        elif latt_type in ("hexagonal", "rhombohedral"):
            #for the conventional cell representation,
            #we allways show the rhombohedral lattices as hexagonal

            #check first if we have the refined structure shows a rhombohedral
            #cell
            #if so, make a supercell
            a, b, c = latt.abc
            if np.all(np.abs([a - b, c - b, a - c]) < 0.001):
                struct.make_supercell(((1, -1, 0), (0, 1, -1), (1, 1, 1)))
                a, b, c = sorted(struct.lattice.abc)

            if abs(b - c) < 0.001:
                a, c = c, a
            new_matrix = [[a / 2, -a * math.sqrt(3) / 2, 0],
                          [a / 2, a * math.sqrt(3) / 2, 0], [0, 0, c]]
            latt = Lattice(new_matrix)
            transf = np.eye(3, 3)

        elif latt_type == "monoclinic":
            #you want to keep the c axis where it is
            #to keep the C- settings

            if self.get_spacegroup().int_symbol.startswith("C"):
                transf = np.zeros(shape=(3, 3))
                transf[2] = [0, 0, 1]
                sorted_dic = sorted([{
                    'vec': latt.matrix[i],
                    'length': latt.abc[i],
                    'orig_index': i
                } for i in [0, 1]],
                                    key=lambda k: k['length'])
                a = sorted_dic[0]['length']
                b = sorted_dic[1]['length']
                c = latt.abc[2]
                new_matrix = None
                for t in itertools.permutations(list(range(2)), 2):
                    m = latt.matrix
                    landang = Lattice([m[t[0]], m[t[1]],
                                       m[2]]).lengths_and_angles
                    if landang[1][0] > 90:
                        #if the angle is > 90 we invert a and b to get
                        #an angle < 90
                        landang = Lattice([-m[t[0]], -m[t[1]],
                                           m[2]]).lengths_and_angles
                        transf = np.zeros(shape=(3, 3))
                        transf[0][t[0]] = -1
                        transf[1][t[1]] = -1
                        transf[2][2] = 1
                        a, b, c = landang[0]
                        alpha = math.pi * landang[1][0] / 180
                        new_matrix = [[a, 0, 0], [0, b, 0],
                                      [0, c * cos(alpha), c * sin(alpha)]]
                        continue

                    elif landang[1][0] < 90:
                        transf = np.zeros(shape=(3, 3))
                        transf[0][t[0]] = 1
                        transf[1][t[1]] = 1
                        transf[2][2] = 1
                        a, b, c = landang[0]
                        alpha = math.pi * landang[1][0] / 180
                        new_matrix = [[a, 0, 0], [0, b, 0],
                                      [0, c * cos(alpha), c * sin(alpha)]]

                if new_matrix is None:
                    #this if is to treat the case
                    #where alpha==90 (but we still have a monoclinic sg
                    new_matrix = [[a, 0, 0], [0, b, 0], [0, 0, c]]
                    transf = np.zeros(shape=(3, 3))
                    for c in range(len(sorted_dic)):
                        transf[c][sorted_dic[c]['orig_index']] = 1
            #if not C-setting
            else:
                #try all permutations of the axis
                #keep the ones with the non-90 angle=alpha
                #and b<c
                new_matrix = None
                for t in itertools.permutations(list(range(3)), 3):
                    m = latt.matrix
                    landang = Lattice([m[t[0]], m[t[1]],
                                       m[t[2]]]).lengths_and_angles
                    if landang[1][0] > 90 and landang[0][1] < landang[0][2]:
                        landang = Lattice([-m[t[0]], -m[t[1]],
                                           m[t[2]]]).lengths_and_angles
                        transf = np.zeros(shape=(3, 3))
                        transf[0][t[0]] = -1
                        transf[1][t[1]] = -1
                        transf[2][t[2]] = 1
                        a, b, c = landang[0]
                        alpha = math.pi * landang[1][0] / 180
                        new_matrix = [[a, 0, 0], [0, b, 0],
                                      [0, c * cos(alpha), c * sin(alpha)]]
                        continue
                    elif landang[1][0] < 90 and landang[0][1] < landang[0][2]:
                        transf = np.zeros(shape=(3, 3))
                        transf[0][t[0]] = 1
                        transf[1][t[1]] = 1
                        transf[2][t[2]] = 1
                        a, b, c = landang[0]
                        alpha = math.pi * landang[1][0] / 180
                        new_matrix = [[a, 0, 0], [0, b, 0],
                                      [0, c * cos(alpha), c * sin(alpha)]]
                if new_matrix is None:
                    #this if is to treat the case
                    #where alpha==90 (but we still have a monoclinic sg
                    new_matrix = [[sorted_lengths[0], 0, 0],
                                  [0, sorted_lengths[1], 0],
                                  [0, 0, sorted_lengths[2]]]
                    transf = np.zeros(shape=(3, 3))
                    for c in range(len(sorted_dic)):
                        transf[c][sorted_dic[c]['orig_index']] = 1

            if international_monoclinic:
                # The above code makes alpha the non-right angle.
                # The following will convert to proper international convention
                # that beta is the non-right angle.
                op = [[0, 1, 0], [1, 0, 0], [0, 0, -1]]
                transf = np.dot(op, transf)
                new_matrix = np.dot(op, new_matrix)
                beta = Lattice(new_matrix).beta
                if beta < 90:
                    op = [[-1, 0, 0], [0, -1, 0], [0, 0, 1]]
                    transf = np.dot(op, transf)
                    new_matrix = np.dot(op, new_matrix)

            latt = Lattice(new_matrix)

        elif latt_type == "triclinic":
            #we use a LLL Minkowski-like reduction for the triclinic cells
            struct = struct.get_reduced_structure("LLL")

            a, b, c = latt.lengths_and_angles[0]
            alpha, beta, gamma = [
                math.pi * i / 180 for i in latt.lengths_and_angles[1]
            ]
            new_matrix = None
            test_matrix = [
                [a, 0, 0], [b * cos(gamma), b * sin(gamma), 0.0],
                [
                    c * cos(beta),
                    c * (cos(alpha) - cos(beta) * cos(gamma)) / sin(gamma),
                    c * math.sqrt(
                        sin(gamma)**2 - cos(alpha)**2 - cos(beta)**2 +
                        2 * cos(alpha) * cos(beta) * cos(gamma)) / sin(gamma)
                ]
            ]

            def is_all_acute_or_obtuse(m):
                recp_angles = np.array(Lattice(m).reciprocal_lattice.angles)
                return np.all(recp_angles <= 90) or np.all(recp_angles > 90)

            if is_all_acute_or_obtuse(test_matrix):
                transf = np.eye(3)
                new_matrix = test_matrix

            test_matrix = [
                [-a, 0, 0], [b * cos(gamma), b * sin(gamma), 0.0],
                [
                    -c * cos(beta),
                    -c * (cos(alpha) - cos(beta) * cos(gamma)) / sin(gamma),
                    -c * math.sqrt(
                        sin(gamma)**2 - cos(alpha)**2 - cos(beta)**2 +
                        2 * cos(alpha) * cos(beta) * cos(gamma)) / sin(gamma)
                ]
            ]

            if is_all_acute_or_obtuse(test_matrix):
                transf = [[-1, 0, 0], [0, 1, 0], [0, 0, -1]]
                new_matrix = test_matrix

            test_matrix = [
                [-a, 0, 0], [-b * cos(gamma), -b * sin(gamma), 0.0],
                [
                    c * cos(beta),
                    c * (cos(alpha) - cos(beta) * cos(gamma)) / sin(gamma),
                    c * math.sqrt(
                        sin(gamma)**2 - cos(alpha)**2 - cos(beta)**2 +
                        2 * cos(alpha) * cos(beta) * cos(gamma)) / sin(gamma)
                ]
            ]

            if is_all_acute_or_obtuse(test_matrix):
                transf = [[-1, 0, 0], [0, -1, 0], [0, 0, 1]]
                new_matrix = test_matrix

            test_matrix = [
                [a, 0, 0], [-b * cos(gamma), -b * sin(gamma), 0.0],
                [
                    -c * cos(beta),
                    -c * (cos(alpha) - cos(beta) * cos(gamma)) / sin(gamma),
                    -c * math.sqrt(
                        sin(gamma)**2 - cos(alpha)**2 - cos(beta)**2 +
                        2 * cos(alpha) * cos(beta) * cos(gamma)) / sin(gamma)
                ]
            ]
            if is_all_acute_or_obtuse(test_matrix):
                transf = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
                new_matrix = test_matrix

            latt = Lattice(new_matrix)

        new_coords = np.dot(transf, np.transpose(struct.frac_coords)).T
        new_struct = Structure(latt,
                               struct.species_and_occu,
                               new_coords,
                               site_properties=struct.site_properties,
                               to_unit_cell=True)
        return new_struct.get_sorted_structure()