Beispiel #1
0
    def open(cls, obj, nids=None, **kwargs):
        """
        Flexible constructor. obj can be a :class:`Flow` or a string with the directory containing the Flow.
        nids is an optional list of :class:`Node` identifiers used to filter the set of :class:`Task` in the Flow.
        """
        has_dirpath = False
        if is_string(obj):
            try:
                obj = Flow.pickle_load(obj)
            except:
                has_dirpath = True

        if not has_dirpath:
            # We have a Flow. smeth is the name of the Task method used to open the file.
            items = []
            smeth = "open_" + cls.EXT.lower()
            for task in obj.iflat_tasks(nids=nids): #, status=obj.S_OK):
                open_method = getattr(task, smeth, None)
                if open_method is None: continue
                ncfile = open_method()
                if ncfile is not None: items.append((task.pos_str, ncfile))
            return cls(*items)

        else:
            # directory --> search for files with the appropriate extension and open it with abiopen.
            if nids is not None: raise ValueError("nids cannot be used when obj is a directory.")
            return cls.from_dir(obj)
Beispiel #2
0
def abiopen(filepath):
    """
    Factory function that opens any file supported by abipy.
    File type is detected from the extension

    Args:
        filepath: string with the filename.
    """
    if os.path.basename(filepath) == "__AbinitFlow__.pickle":
        return Flow.pickle_load(filepath)

    cls = abifile_subclass_from_filename(filepath)
    return cls.from_file(filepath)
Beispiel #3
0
 def test_flow(self):
     """
     Testing flow creation and task registering
     """
     flow = Flow(workdir=test_dir,
                 manager=TaskManager.from_file(
                     os.path.join(test_dir, "taskmanager.yml")))
     inp = {}
     flow.register_task(input=inp)
     flow.allocate()
     self.assertTrue(flow.allocated)
     self.assertIsInstance(flow[0], Work)
     self.assertIsInstance(flow[0][0], Task)
     self.assertEqual(flow.check_status(), None)
Beispiel #4
0
 def test_flow(self):
     """
     Testing flow creation and task registering
     """
     flow = Flow(workdir=test_dir, manager=TaskManager.from_file(os.path.join(test_dir, "taskmanager.yml")))
     inp = {}
     flow.register_task(input=inp)
     flow.allocate()
     self.assertTrue(flow.allocated)
     self.assertIsInstance(flow[0], Work)
     self.assertIsInstance(flow[0][0], Task)
     self.assertEqual(flow.check_status(), None)
Beispiel #5
0
def abiopen(filepath):
    """
    Factory function that opens any file supported by abipy.
    File type is detected from the extension

    Args:
        filepath: string with the filename.
    """
    if os.path.basename(filepath) == "__AbinitFlow__.pickle":
        return Flow.pickle_load(filepath)

    # Handle old output files produced by Abinit.
    import re
    outnum = re.compile(".+\.out[\d]+")
    abonum = re.compile(".+\.abo[\d]+")
    if outnum.match(filepath) or abonum.match(filepath):
        return AbinitOutputFile.from_file(filepath)

    cls = abifile_subclass_from_filename(filepath)
    return cls.from_file(filepath)
Beispiel #6
0
def abiopen(filepath):
    """
    Factory function that opens any file supported by abipy.
    File type is detected from the extension

    Args:
        filepath: string with the filename.
    """
    if os.path.basename(filepath) == "__AbinitFlow__.pickle":
        return Flow.pickle_load(filepath)

    # Handle old output files produced by Abinit.
    import re
    outnum = re.compile(".+\.out[\d]+")
    abonum = re.compile(".+\.abo[\d]+")
    if outnum.match(filepath) or abonum.match(filepath):
        return AbinitOutputFile.from_file(filepath)

    cls = abifile_subclass_from_filename(filepath)
    return cls.from_file(filepath)
Beispiel #7
0
    def open(cls, obj, nids=None, **kwargs):
        """
        Flexible constructor. obj can be a :class:`Flow` or a string with the directory containing the Flow.
        nids is an optional list of :class:`Node` identifiers used to filter the set of :class:`Task` in the Flow.
        """
        has_dirpath = False
        if is_string(obj): 
            try:
                obj = Flow.pickle_load(obj)
            except:
                has_dirpath = True

        items = []

        if not has_dirpath:
            # We have a Flow. smeth is the name of the Task method used to open the file.
            smeth = "open_" + cls.EXT.lower()
            for task in obj.iflat_tasks(nids=nids): #, status=obj.S_OK):
                open_method = getattr(task, smeth, None)
                if open_method is None: continue
                ncfile = open_method()
                if ncfile is not None: items.append((task.pos_str, ncfile))

        else:
            # directory --> search for files with the appropriate extension and open it with abiopen.
            if nids is not None: raise ValueError("nids cannot be used when obj is a directory.")

            from abipy.abilab import abiopen
            for dirpath, dirnames, filenames in os.walk(obj):
                filenames = [f for f in filenames if f.endswith(cls.EXT + ".nc") or f.endswith(cls.EXT)]
                for f in filenames:
                    ncfile = abiopen(os.path.join(dirpath, f))
                    if ncfile is not None: items.append((ncfile.filepath, ncfile))

        new = cls(*items)
        # Save a reference to the initial object so that we can reload it if needed
        #new._initial_object = obj
        return new
Beispiel #8
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        # manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        # abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # flow = Flow(self.work_dir, manager)
        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence study
            if 'kp_in' in self.spec.data.keys():
                if self.spec['kp_in'] > 9:
                    print('WARNING:\nkp_in should be < 13 to generate an n x n x n mesh\nfor larger values a grid with '
                          'density kp_in will be generated')
                kppa = self.spec['kp_in']
            else:
                kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        scf_nband = self.get_bands(self.structure) + 20
        # additional bands to accommodate for nbdbuf and a bit extra
        nscf_nband = [10 * self.get_bands(self.structure)]

        nksmall = None
        ecuteps = [8]

        extra_abivars = dict()

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        # self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        # self.convs['nscf_nbands']['test_range'] =
        # tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        ecut = extra_abivars.pop('ecut', 44)
        ecutsigx = extra_abivars.pop('ecutsigx', 44)

        if ecutsigx > ecut:
            raise RuntimeError('ecutsigx can not be largen than ecut')
        if ecutsigx < max(ecuteps):
            raise RuntimeError('ecutsigx < ecuteps this is not realistic')

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k == 'ecut':
                    ecut = self.option[k]
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})

        try:
            grid = read_grid_from_file(s_name(self.structure)+".full_res")['grid']
            all_done = read_grid_from_file(s_name(self.structure)+".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w'+str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test'] or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        # tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        # tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update({test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update({test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(value * self.get_bands(self.structure))
                                # scr_nband takes nscf_nbands if not specified
                                # sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print('| setting up for testing the converged values at the high kp grid ')
                # add a bandstructure and dos calculation
                if os.path.isfile('bands'):
                    nksmall = -30
                    # negative value > only bandstructure
                else:
                    nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [self.option['ecuteps'], self.option['ecuteps'] + self.convs['ecuteps']['test_range'][1] -
                           self.convs['ecuteps']['test_range'][0]]
                nscf_nband = [self.option['nscf_nbands'], self.option['nscf_nbands'] + self.convs['nscf_nbands'][
                    'test_range'][1] - self.convs['nscf_nbands']['test_range'][0]]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : %s ' % str(ecuteps))
        logger.info('extra   : %s ' % str(extra_abivars))
        logger.info('nscf_nb : %s ' % str(nscf_nband))
        inputs = g0w0_convergence_inputs(abi_structure, self.pseudo_table, kppa, nscf_nband, ecuteps, ecutsigx,
                                         scf_nband, ecut, accuracy="normal", spin_mode="unpolarized", smearing=None,
                                         response_models=response_models, charge=0.0, sigma_nband=None, scr_nband=None,
                                         gamma=gamma, nksmall=nksmall, extra_abivars=extra_abivars)

        work = G0W0Work(scf_inputs=inputs[0], nscf_inputs=inputs[1], scr_inputs=inputs[2], sigma_inputs=inputs[3])

        # work = g0w0_extended_work(abi_structure, self.pseudo_table, kppa, nscf_nband, ecuteps, ecutsigx, scf_nband,
        # accuracy="normal", spin_mode="unpolarized", smearing=None, response_models=response_models,
        # charge=0.0, sigma_nband=None, scr_nband=None, gamma=gamma, nksmall=nksmall, **extra_abivars)

        print(workdir)
        flow.register_work(work, workdir=workdir)
        return flow.allocate()
Beispiel #9
0
 def test_fixes(self):
     flow = Flow(workdir=test_dir, manager=TaskManager.from_file(os.path.join(test_dir, "taskmanager.yml")))
     inp = {}
     flow.register_task(input=inp)
     flow.allocate()
Beispiel #10
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        # manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        # abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # flow = Flow(self.work_dir, manager)
        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence study
            if 'kp_in' in self.spec.data.keys():
                if self.spec['kp_in'] > 9:
                    print(
                        'WARNING:\nkp_in should be < 13 to generate an n x n x n mesh\nfor larger values a grid with '
                        'density kp_in will be generated')
                kppa = self.spec['kp_in']
            else:
                kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        scf_nband = self.get_bands(self.structure) + 20
        # additional bands to accommodate for nbdbuf and a bit extra
        nscf_nband = [10 * self.get_bands(self.structure)]

        nksmall = None
        ecuteps = [8]

        extra_abivars = dict()

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        # self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        # self.convs['nscf_nbands']['test_range'] =
        # tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        ecut = extra_abivars.pop('ecut', 44)
        ecutsigx = extra_abivars.pop('ecutsigx', 44)

        if ecutsigx > ecut:
            raise RuntimeError('ecutsigx can not be largen than ecut')
        if ecutsigx < max(ecuteps):
            raise RuntimeError('ecutsigx < ecuteps this is not realistic')

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k == 'ecut':
                    ecut = self.option[k]
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})

        try:
            grid = read_grid_from_file(s_name(self.structure) +
                                       ".full_res")['grid']
            all_done = read_grid_from_file(
                s_name(self.structure) + ".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w' + str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test']
                    or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        # tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        # tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(
                                    value * self.get_bands(self.structure))
                                # scr_nband takes nscf_nbands if not specified
                                # sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print(
                    '| setting up for testing the converged values at the high kp grid '
                )
                # add a bandstructure and dos calculation
                if os.path.isfile('bands'):
                    nksmall = -30
                    # negative value > only bandstructure
                else:
                    nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [
                    self.option['ecuteps'], self.option['ecuteps'] +
                    self.convs['ecuteps']['test_range'][1] -
                    self.convs['ecuteps']['test_range'][0]
                ]
                nscf_nband = [
                    self.option['nscf_nbands'], self.option['nscf_nbands'] +
                    self.convs['nscf_nbands']['test_range'][1] -
                    self.convs['nscf_nbands']['test_range'][0]
                ]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : %s ' % str(ecuteps))
        logger.info('extra   : %s ' % str(extra_abivars))
        logger.info('nscf_nb : %s ' % str(nscf_nband))
        inputs = g0w0_convergence_inputs(abi_structure,
                                         self.pseudo_table,
                                         kppa,
                                         nscf_nband,
                                         ecuteps,
                                         ecutsigx,
                                         scf_nband,
                                         ecut,
                                         accuracy="normal",
                                         spin_mode="unpolarized",
                                         smearing=None,
                                         response_models=response_models,
                                         charge=0.0,
                                         sigma_nband=None,
                                         scr_nband=None,
                                         gamma=gamma,
                                         nksmall=nksmall,
                                         extra_abivars=extra_abivars)

        work = G0W0Work(scf_inputs=inputs[0],
                        nscf_inputs=inputs[1],
                        scr_inputs=inputs[2],
                        sigma_inputs=inputs[3])

        # work = g0w0_extended_work(abi_structure, self.pseudo_table, kppa, nscf_nband, ecuteps, ecutsigx, scf_nband,
        # accuracy="normal", spin_mode="unpolarized", smearing=None, response_models=response_models,
        # charge=0.0, sigma_nband=None, scr_nband=None, gamma=gamma, nksmall=nksmall, **extra_abivars)

        print(workdir)
        flow.register_work(work, workdir=workdir)
        return flow.allocate()