def estimate_alpha_rw(
    image, trimap, preconditioner=None, laplacian_kwargs={}, cg_kwargs={}
):
    """
    Estimate alpha from an input image and an input trimap using Learning Based Digital Matting as proposed by :cite:`grady2005random`.

    Parameters
    -----------------
    image: numpy.ndarray
        Image with shape :math:`h \\times  w \\times d` for which the alpha matte should be estimated
    trimap: numpy.ndarray
        Trimap with shape :math:`h \\times  w \\times 1` of the image
    preconditioner: function or scipy.sparse.linalg.LinearOperator
        Function or sparse matrix that applies the preconditioner to a vector (default: jacobi)
    laplacian_kwargs: dictionary
        Arguments passed to the :code:`rw_laplacian` function
    cg_kwargs: dictionary
        Arguments passed to the :code:`cg` solver

    Returns
    ----------------
    alpha: numpy.ndarray
        Estimated alpha matte
    """
    if preconditioner is None:
        preconditioner = jacobi

    A, b = make_linear_system(rw_laplacian(image, **laplacian_kwargs), trimap)

    x = cg(A, b, M=preconditioner(A), **cg_kwargs)

    alpha = np.clip(x, 0, 1).reshape(trimap.shape)

    return alpha
def estimate_alpha_lbdm(image,
                        trimap,
                        preconditioner=None,
                        laplacian_kwargs={},
                        cg_kwargs={}):
    """
    Estimate alpha from an input image and an input trimap using Learning Based Digital Matting as proposed by :cite:`zheng2009learning`.

    Parameters
    ----------
    image: numpy.ndarray
        Image with shape :math:`h \\times  w \\times d` for which the alpha matte should be estimated
    trimap: numpy.ndarray
        Trimap with shape :math:`h \\times  w` of the image
    preconditioner: function or scipy.sparse.linalg.LinearOperator
        Function or sparse matrix that applies the preconditioner to a vector (default: ichol)
    laplacian_kwargs: dictionary
        Arguments passed to the :code:`lbdm_laplacian` function
    cg_kwargs: dictionary
        Arguments passed to the :code:`cg` solver

    Returns
    -------
    alpha: numpy.ndarray
        Estimated alpha matte

    Example
    -------
    >>> from pymatting import *
    >>> image = load_image("data/lemur/lemur.png", "RGB")
    >>> trimap = load_image("data/lemur/lemur_trimap.png", "GRAY")
    >>> alpha = estimate_alpha_lbdm(
    ...     image,
    ...     trimap,
    ...     laplacian_kwargs={"epsilon": 1e-6},
    ...     cg_kwargs={"maxiter":2000})

    """
    if preconditioner is None:
        preconditioner = ichol

    sanity_check_image(image)

    A, b = make_linear_system(lbdm_laplacian(image, **laplacian_kwargs),
                              trimap)

    x = cg(A, b, M=preconditioner(A), **cg_kwargs)

    alpha = np.clip(x, 0, 1).reshape(trimap.shape)

    return alpha
Beispiel #3
0
def estimate_alpha_knn(image,
                       trimap,
                       preconditioner=None,
                       laplacian_kwargs={},
                       cg_kwargs={}):
    """
    Estimate alpha from an input image and an input trimap using KNN Matting similar to :cite:`chen2013knn`.
    See `knn_laplacian` for more details.

    Parameters
    ----------
    image: numpy.ndarray
        Image with shape :math:`h \\times  w \\times d` for which the alpha matte should be estimated
    trimap: numpy.ndarray
        Trimap with shape :math:`h \\times  w` of the image
    preconditioner: function or scipy.sparse.linalg.LinearOperator
        Function or sparse matrix that applies the preconditioner to a vector (default: jacobi)
    laplacian_kwargs: dictionary
        Arguments passed to the :code:`knn_laplacian` function
    cg_kwargs: dictionary
        Arguments passed to the :code:`cg` solver

    Returns
    -------
    alpha: numpy.ndarray
        Estimated alpha matte

    Example
    -------
    >>> from pymatting import *
    >>> image = load_image("data/lemur/lemur.png", "RGB")
    >>> trimap = load_image("data/lemur/lemur_trimap.png", "GRAY")
    >>> alpha = estimate_alpha_knn(
    ...     image,
    ...     trimap,
    ...     laplacian_kwargs={"n_neighbors": [15, 10]},
    ...     cg_kwargs={"maxiter":2000})
    """
    if preconditioner is None:
        preconditioner = jacobi

    sanity_check_image(image)

    A, b = make_linear_system(knn_laplacian(image, **laplacian_kwargs), trimap)

    x = cg(A, b, M=preconditioner(A), **cg_kwargs)

    alpha = np.clip(x, 0, 1).reshape(trimap.shape)

    return alpha
Beispiel #4
0
def estimate_alpha_cf(image,
                      trimap,
                      preconditioner=None,
                      laplacian_kwargs={},
                      cg_kwargs={}):
    """
    Estimate alpha from an input image and an input trimap using Closed-Form Alpha Matting as proposed by :cite:`levin2007closed`.

    Parameters
    -----------------
    image: numpy.ndarray
        Image with shape :math:`h \\times  w \\times d` for which the foreground should be estimated
    trimap: numpy.ndarray
        Trimap with shape :math:`h \\times  w \\times 1` of the image
    preconditioner: function or scipy.sparse.linalg.LinearOperator
        Function or sparse matrix that applies the preconditioner to a vector (default: ichol)
    laplacian_kwargs: dictionary
        Arguments passed to the :code:`cf_laplacian` function
    cg_kwargs: dictionary
        Arguments passed to the :code:`cg`

    Returns
    ----------------
    alpha: numpy.ndarray
        Estimated alpha matte
    """
    if preconditioner is None:
        preconditioner = ichol

    A, b = make_linear_system(cf_laplacian(image, **laplacian_kwargs), trimap)

    x = cg(A, b, M=preconditioner(A), **cg_kwargs)

    alpha = np.clip(x, 0, 1).reshape(trimap.shape)

    return alpha