def likefunc(self,n,s,dels,delb): """log-likelihood function for individual parameter points in the model. Contains the two nuisance parameters dels and delb, which parameterise the systematic errors. Marginalise these out to be Bayesian, or profile them to be pseudo-frequentist (they still have priors). The parameter 's' (signal mean) should then be the only free parameter left. Args: n - observed number of events i - which signal region we are currently looking at dels - systematic error parameter for signal delb - systematic error parameter for background s - expected number of events due to signal ssys - estimated gaussian uncertainty on expected number of signal events (effectively a prior) b - expected number of events due to background bsys - estimated gaussian uncertainty on expected number of background events (effectively a prior) bstat - estimated "statistical" gaussian uncertainty on expected number of background events (also effectively a prior) K - signal efficiency scaling factor """ #bsystot = np.sqrt(self.bsys**2 + self.bstat**2) # assume priors are independent siglike = logpoissonlike(n,self.sK*s*(1+dels*self.ssys)+self.b*(1+delb*self.bsystot)) # poisson signal + background log likelihood #Need to change the scaling of the prior to match the simulated data. #Makes no difference to inferences. Pdels = pymc.normal_like(dels,0,1) #+ 0.5*np.log(2*np.pi) #standard normal gaussian log prior on dels Pdelb = pymc.normal_like(delb,0,1) #+ 0.5*np.log(2*np.pi) #standard normal gaussian log prior on delb if siglike + Pdels + Pdelb < -1e200: print dels, delb print siglike,Pdels,Pdelb, self.sK*s*(1+dels*self.ssys)+self.b*(1+delb*self.bsystot) raise return siglike + Pdels + Pdelb
def plot_ratio_analysis( data_samples=(100, ), dataset_samples=(100, ), datasets=100): x, y = np.meshgrid(data_samples, dataset_samples) z = np.empty(x.shape, dtype=np.float) for i, data_sample in enumerate(data_samples): for j, dataset_sample in enumerate(dataset_samples): data = np.random.randn(x[j, i]) errors = [] sl_sum = 0 pt_sum = 0 for rep in range(1, 200): # Chose two random mu pts mu1 = (np.random.rand() - .5) * 3 mu2 = (np.random.rand() - .5) * 3 # Evaluate true likelihood pt1 = pm.normal_like(data, mu=mu1, tau=1) pt2 = pm.normal_like(data, mu=mu2, tau=1) ptr = pt1 / pt2 pt_sum += pt1 pt_sum += pt2 #print ptr # Evaluate synth likelihood ps1 = synth_likelihood(data, mu1, 1, dataset_samples=y[j, i], samples=datasets) ps2 = synth_likelihood(data, mu2, 1, dataset_samples=y[j, i], samples=datasets) sl_sum += ps1 sl_sum += ps2 pts = ps1 / ps2 #print pts errors.append((pts - ptr)**2) print pt_sum print sl_sum z[j, i] = np.mean(errors) print x[j, i], y[j, i], z[j, i] print x print y print z cont = plt.contourf(x, y, z) plt.colorbar(cont) plt.xlabel('Number of samples per dataset') plt.ylabel('Size of input data.')
def plot_erroranalysis( data_samples=(10, ), dataset_samples=(10, ), datasets=200): x = dataset_samples y = np.empty(x.shape, dtype=np.float) for data_sample in data_samples: data = np.random.randn(data_sample) for i, dataset_sample in enumerate(dataset_samples): errors = [] sl_sum = 0 pt_sum = 0 for rep in range(1, 400): # Chose two random mu pts mu1 = 0 mu2 = (np.random.rand() - .5) # Evaluate true likelihood pt1 = pm.normal_like(data, mu=mu1, tau=1**-2) pt2 = pm.normal_like(data, mu=mu2, tau=1**-2) ptr = pt1 / pt2 pt_sum += pt1 pt_sum += pt2 #print ptr # Evaluate synth likelihood ps1 = synth_likelihood(data, mu1, 1, dataset_samples=x[i], samples=datasets) ps2 = synth_likelihood(data, mu2, 1, dataset_samples=x[i], samples=datasets) sl_sum += ps1 sl_sum += ps2 pts = ps1 / ps2 #print pts errors.append((pts - ptr)**2) print pt_sum print sl_sum y[i] = np.mean(errors) plt.plot(x, y, label='%i' % data_sample) plt.xlabel('Number of samples per dataset') plt.ylabel('MSE') plt.legend()
def X(value=X_true, K=K, A=A, mu = mu_x_init, tau = tau_x_init): """Autoregression""" # Initial data logp=normal_like(value[:K], mu, tau) # Difference equation for i in xrange(K,T): logp += normal_like(value[i], sum(A[:K]*value[i-K:i]), 1.) return logp
def test_states_missing(): """ Test that the state sequence step function properly handles missing observations. """ np.random.seed(2352523) model_true = simple_state_seq_model() trans_mat_true = model_true['trans_mat_obs'] mu_true = model_true['mu'].value states_true = model_true['states_rv'].value y_true = model_true['y_rv'].value N_obs_half = model_true['N_obs'] // 2 y_mask = np.arange(model_true['N_obs']) > N_obs_half y_obs = np.ma.masked_array(y_true, mask=y_mask) model_test = simple_state_seq_model(y_obs=y_obs) mcmc_step = pymc.MCMC(model_test) mcmc_step.draw_from_prior() mcmc_step.use_step_method(HMMStatesStep, model_test['states_rv']) (states_step, ) = mcmc_step.step_method_dict[model_test['states_rv']] assert isinstance(states_step, HMMStatesStep) # # First, let's check that the logp function is working. # In this case, that also means missing values were forward-filled. # ind = np.arange(np.alen(y_obs)) ind[y_obs.mask] = 0 y_logps_0_true = np.array([ pymc.normal_like(y, model_test['mu_vals'][0], 100) for t, y in enumerate(y_obs) ]) y_logps_0_true[y_obs.mask] = 0. y_logps_1_true = np.array([ pymc.normal_like(y, model_test['mu_vals'][1], 100) for t, y in enumerate(y_obs) ]) y_logps_1_true[y_obs.mask] = 0. states_step.compute_y_logp() y_logps_est = states_step.y_logp_vals assert_allclose(y_logps_est[0], y_logps_0_true) assert_allclose(y_logps_est[1], y_logps_1_true) mcmc_step.sample(2 * model_true['N_obs']) assert_hpd(mcmc_step.states_rv, states_true, alpha=0.1)
def X_obs(pi=pi, sigma=sigma, value=X): logp = mc.normal_like(pl.array(value).ravel(), (pl.ones([N,J*T])*pl.array(pi).ravel()).ravel(), (pl.ones([N,J*T])*pl.array(sigma).ravel()).ravel()**-2) return logp logp = pl.zeros(N) for n in range(N): logp[n] = mc.normal_like(pl.array(value[n]).ravel(), pl.array(pi+beta).ravel(), pl.array(sigma).ravel()**-2) return mc.flib.logsum(logp - pl.log(N))
def test_states_trans_steps(): """Test sampling of mixture states and transition matrices exclusively and simultaneously. I.e. no regression terms/means or variances to estimate, only the state sequence and transition probability matrix. """ np.random.seed(2352523) model_true = simple_state_trans_model() trans_mat_true = model_true['trans_mat_rv'].value mu_true = model_true['mu'].value states_true = model_true['states_rv'].value y_obs = model_true['y_rv'].value model_test = simple_state_trans_model(y_obs=y_obs) mcmc_step = pymc.MCMC(model_test) mcmc_step.draw_from_prior() mcmc_step.use_step_method(HMMStatesStep, mcmc_step.states_rv) (states_step, ) = mcmc_step.step_method_dict[mcmc_step.states_rv] assert isinstance(states_step, HMMStatesStep) mcmc_step.use_step_method(TransProbMatStep, mcmc_step.trans_mat_rv) (trans_mat_step, ) = mcmc_step.step_method_dict[mcmc_step.trans_mat_rv] assert isinstance(trans_mat_step, TransProbMatStep) # # First, let's check that the logp function is working. # y_logps_0_true = np.array([ pymc.normal_like(y_obs[t], model_test['mu_vals'][0], 100) for t in xrange(model_test['N_obs']) ]) y_logps_1_true = np.array([ pymc.normal_like(y_obs[t], model_test['mu_vals'][1], 100) for t in xrange(model_test['N_obs']) ]) states_step.compute_y_logp() y_logps_est = states_step.y_logp_vals assert_allclose(y_logps_est[0], y_logps_0_true) assert_allclose(y_logps_est[1], y_logps_1_true) mcmc_step.sample(2000) assert_hpd(mcmc_step.states_rv, states_true, alpha=0.1) assert_hpd(mcmc_step.trans_mat_rv, trans_mat_true, alpha=0.1)
def X_obs(pi=pi, sigma=sigma, value=X): logp = mc.normal_like( pl.array(value).ravel(), (pl.ones([N, J * T]) * pl.array(pi).ravel()).ravel(), (pl.ones([N, J * T]) * pl.array(sigma).ravel()).ravel()**-2) return logp logp = pl.zeros(N) for n in range(N): logp[n] = mc.normal_like( pl.array(value[n]).ravel(), pl.array(pi + beta).ravel(), pl.array(sigma).ravel()**-2) return mc.flib.logsum(logp - pl.log(N))
def plot_ratio_analysis(data_samples=(100,), dataset_samples=(100,), datasets=100): x, y = np.meshgrid(data_samples, dataset_samples) z = np.empty(x.shape, dtype=np.float) for i, data_sample in enumerate(data_samples): for j, dataset_sample in enumerate(dataset_samples): data = np.random.randn(x[j, i]) errors = [] sl_sum = 0 pt_sum = 0 for rep in range(1, 200): # Chose two random mu pts mu1 = (np.random.rand()-.5) * 3 mu2 = (np.random.rand()-.5) * 3 # Evaluate true likelihood pt1 = pm.normal_like(data, mu=mu1, tau=1) pt2 = pm.normal_like(data, mu=mu2, tau=1) ptr = pt1 / pt2 pt_sum += pt1 pt_sum += pt2 #print ptr # Evaluate synth likelihood ps1 = synth_likelihood(data, mu1, 1, dataset_samples=y[j, i], samples=datasets) ps2 = synth_likelihood(data, mu2, 1, dataset_samples=y[j, i], samples=datasets) sl_sum += ps1 sl_sum += ps2 pts = ps1 / ps2 #print pts errors.append((pts - ptr)**2) print pt_sum print sl_sum z[j, i] = np.mean(errors) print x[j, i], y[j,i], z[j, i] print x print y print z cont = plt.contourf(x, y, z) plt.colorbar(cont) plt.xlabel('Number of samples per dataset') plt.ylabel('Size of input data.')
def logdoublenormal(x,mean,sigmaP,sigmaM): #mean is measured value #x is computed theory value #sigmaP and sigmaM are distances from mean to upper and lower 1 sigma (68%) #confidence limits. if x==None: return -1e300 if x>=mean: tauP = 1./sigmaP**2 #need to remove the normalisation factor so we get the same normalisation #for each half of the likelihood. loglike = pymc.normal_like(x,mean,tauP) - pymc.normal_like(mean,mean,tauP) if x<mean: tauM = 1./sigmaM**2 loglike = pymc.normal_like(x,mean,tauM) - pymc.normal_like(mean,mean,tauM) return loglike
def obs(f=rate_stoch, age_indices=age_indices, age_weights=age_weights, value=d_val, tau=1./(d_se)**2): f_i = dismod3.utils.rate_for_range(f, age_indices, age_weights) return mc.normal_like(value, f_i, tau)
def x(N=N, mu=moo, tau=tau, n=n, value=np.log(data)): k = N-n dev = (value[0]-mu)*np.sqrt(tau) out = gammaln(N+1) - gammaln(k) + (k-1)*np.log(pm.utils.normcdf(dev)) + pm.normal_like(value, mu, tau) if np.isnan(out): raise ValueError return out
def obs(value=data.y, i_obs=i_obs, mu=mu, sigma_explained=sigma_explained, sigma_e=sigma_e): return mc.normal_like(value[i_obs], mu[i_obs], 1. / (sigma_explained[i_obs]**2. + sigma_e**-2.))
def obs(f=rate_stoch, age_indices=age_indices, age_weights=age_weights, value=d_val, tau=1. / (d_se)**2): f_i = dismod3.utils.rate_for_range(f, age_indices, age_weights) return mc.normal_like(value, f_i, tau)
def covariate_constraint(mu=vars['mu_age'], alpha=vars['alpha'], beta=vars['beta'], U_all=U_all, X_sex_max=X_sex_max, X_sex_min=X_sex_min, lower=np.log(model.parameters[name]['level_bounds']['lower']), upper=np.log(model.parameters[name]['level_bounds']['upper'])): log_mu_max = np.log(mu.max()) log_mu_min = np.log(mu.min()) alpha = np.array([float(x) for x in alpha]) if len(alpha) > 0: for U_i in U_all: log_mu_max += max(0, alpha[U_i].max()) log_mu_min += min(0, alpha[U_i].min()) # this estimate is too crude, and is causing problems #if len(beta) > 0: # log_mu_max += np.sum(np.maximum(X_max*beta, X_min*beta)) # log_mu_min += np.sum(np.minimum(X_max*beta, X_min*beta)) # but leaving out the sex effect results in strange problems, too log_mu_max += X_sex_max*float(beta[sex_index]) log_mu_min += X_sex_min*float(beta[sex_index]) lower_violation = min(0., log_mu_min - lower) upper_violation = max(0., log_mu_max - upper) return mc.normal_like([lower_violation, upper_violation], 0., 1.e-6**-2)
def get_likelihood_M0(map_M0, x, pwr, sigma, tau, obstype): A0 = get_variables_M0(map_M0) A0 = curve_fit_M0(x, pwr, A0, sigma) if obstype == '.logiobs': return pymc.normal_like(pwr, get_spectrum_M0(x, A0), tau) else: return pymc.lognormal_like(pwr, get_spectrum_M0(x, A0), tau)
def get_likelihood_M2(map_M2, x, pwr, sigma, tau, obstype): A2 = get_variables_M2(map_M2) A2 = curve_fit_M2(x, pwr, A2, sigma) if obstype == '.logiobs': return pymc.normal_like(pwr, get_spectrum_M2(x, A2), tau) else: return pymc.lognormal_like(pwr, get_spectrum_M2(x, A2), tau)
def get_likelihood_M1(map_M1, x, pwr, sigma, tau, obstype): A1 = get_variables_M1(map_M1) A1 = curve_fit_M1(x, pwr, A1, sigma) if obstype == '.logiobs': return pymc.normal_like(pwr, get_spectrum_M1(x, A1), tau) else: return pymc.lognormal_like(pwr, get_spectrum_M1(x, A1), tau)
def model(params=params, vars=vars, paramnames=paramnames, filters=filters, value=1.0): # Set the parameters in the model for i, param in enumerate(paramnames): if debug: print("setting ", param, " to ", params[i]) self.model.parameters[param] = params[i] logp = 0 numpts = 0 for i, f in enumerate(filters): mod, err, mask = self.model(f, self.sn.data[f].MJD) m = mask * self.sn.data[f].mask if not np.sometrue(m): continue numpts += np.sum(m) tau = np.power(vars[i] + np.power(self.sn.data[f].e_mag, 2), -1) logp += pymc.normal_like(self.sn.data[f].mag[m], mod[m], tau[m]) #if numpts < len(paramnames): # return -np.inf return logp
def mixture(value=1., gamma=gamma, pi=[0.2, 0.8], mu=[-2., 3.], sigma=[0.01, 0.01]): """ The log probability of a mixture of normal densities. :param value: The point of evaluation. :type value : float :param gamma: The parameter characterizing the SMC one-parameter family. :type gamma : float :param pi : The weights of the components. :type pi : 1D :class:`numpy.ndarray` :param mu : The mean of each component. :type mu : 1D :class:`numpy.ndarray` :param sigma: The standard deviation of each component. :type sigma : 1D :class:`numpy.ndarray` """ # Make sure everything is a numpy array pi = np.array(pi) mu = np.array(mu) sigma = np.array(sigma) # The number of components in the mixture n = pi.shape[0] # pymc.normal_like requires the precision not the variance: tau = np.sqrt(1. / sigma ** 2) # The following looks a little bit awkward because of the need for # numerical stability: p = np.log(pi) p += np.array([pymc.normal_like(value, mu[i], tau[i]) for i in range(n)]) p = math.fsum(np.exp(p)) # logp should never be negative, but it can be zero... if p <= 0.: return -np.inf return gamma * math.log(p)
def deriv_sign_rate(f=rate, age_indices=age_indices, tau=1.e14, deriv=deriv, sign=sign): df = pl.diff(f[age_indices], deriv) return mc.normal_like(pl.absolute(df) * (sign * df < 0), 0., tau)
def obs(f=vars['rate_stoch'], age_indices=age_indices, age_weights=age_weights, value=np.log(dm.value_per_1(d)), tau=se**-2, data=d): f_i = rate_for_range(f, age_indices, age_weights) return mc.normal_like(value, np.log(f_i), tau)
def multi_normal_like(values, vec_mu, tau): """logp for multi normal""" logp = 0 for i in range(len(vec_mu)): logp += pm.normal_like(values[i, :], vec_mu[i], tau) return logp
def multi_normal_like(values, vec_mu, tau): """logp for multi normal""" logp = 0 for i in range(len(vec_mu)): logp += pm.normal_like(values[i,:], vec_mu[i], tau) return logp
def smooth_gamma(gamma=flat_gamma, knots=knots, tau=smoothing**-2): # the following is to include a "noise floor" so that level value # zero prior does not exert undue influence on age pattern # smoothing gamma = gamma.clip(pl.log(pl.exp(gamma).mean()/10.), pl.inf) # only include smoothing on values within 10x of mean return mc.normal_like(pl.sqrt(pl.sum(pl.diff(gamma)**2 / pl.diff(knots))), 0, tau)
def covariate_constraint( mu=vars['mu_age'], alpha=vars['alpha'], beta=vars['beta'], U_all=U_all, X_sex_max=X_sex_max, X_sex_min=X_sex_min, lower=np.log(model.parameters[name]['level_bounds']['lower']), upper=np.log(model.parameters[name]['level_bounds']['upper'])): log_mu_max = np.log(mu.max()) log_mu_min = np.log(mu.min()) alpha = np.array([float(x) for x in alpha]) if len(alpha) > 0: for U_i in U_all: log_mu_max += max(0, alpha[U_i].max()) log_mu_min += min(0, alpha[U_i].min()) # this estimate is too crude, and is causing problems #if len(beta) > 0: # log_mu_max += np.sum(np.maximum(X_max*beta, X_min*beta)) # log_mu_min += np.sum(np.minimum(X_max*beta, X_min*beta)) # but leaving out the sex effect results in strange problems, too log_mu_max += X_sex_max * float(beta[sex_index]) log_mu_min += X_sex_min * float(beta[sex_index]) lower_violation = min(0., log_mu_min - lower) upper_violation = max(0., log_mu_max - upper) return mc.normal_like([lower_violation, upper_violation], 0., 1.e-6**-2)
def plot_erroranalysis(data_samples=(10,), dataset_samples=(10,), datasets=200): x = dataset_samples y = np.empty(x.shape, dtype=np.float) for data_sample in data_samples: data = np.random.randn(data_sample) for i, dataset_sample in enumerate(dataset_samples): errors = [] sl_sum = 0 pt_sum = 0 for rep in range(1, 400): # Chose two random mu pts mu1 = 0 mu2 = (np.random.rand()-.5) # Evaluate true likelihood pt1 = pm.normal_like(data, mu=mu1, tau=1**-2) pt2 = pm.normal_like(data, mu=mu2, tau=1**-2) ptr = pt1 / pt2 pt_sum += pt1 pt_sum += pt2 #print ptr # Evaluate synth likelihood ps1 = synth_likelihood(data, mu1, 1, dataset_samples=x[i], samples=datasets) ps2 = synth_likelihood(data, mu2, 1, dataset_samples=x[i], samples=datasets) sl_sum += ps1 sl_sum += ps2 pts = ps1 / ps2 #print pts errors.append((pts - ptr)**2) print pt_sum print sl_sum y[i] = np.mean(errors) plt.plot(x, y, label='%i' % data_sample) plt.xlabel('Number of samples per dataset') plt.ylabel('MSE') plt.legend()
def obs(f=vars['rate_stoch'], age_indices=age_indices, age_weights=age_weights, value=pl.log(dm.value_per_1(d)), tau=se**-2, data=d): f_i = dismod3.utils.rate_for_range(f, age_indices, age_weights) return mc.normal_like(value, pl.log(f_i), tau)
def get_likelihood_M0(map_M0, x, pwr, sigma, obstype): tau = 1.0 / (sigma ** 2) A0 = get_variables_M0(map_M0)[0:3] A0 = curve_fit_M0(x, pwr, A0, sigma) if obstype == '.logiobs': return pymc.normal_like(pwr, get_spectrum_M0(x, A0), tau) else: return pymc.lognormal_like(pwr, get_spectrum_M0(x, A0), tau)
def r_like(b1=beta1_summ, n=obs_summ['n']): """Likelihood for correlation coefficients of summarized data""" # Convert slope to r rho = b1 * stdev_phe / stdev_iq # Fisher transformation to allow for normality assumption eps = np.arctan(rho) - np.arctan(obs_summ['correlation']) # Difference should be mean-zero return normal_like(eps, mu=np.zeros(len(n)), tau=n - 3)
def r_like(b1=beta1_summ, n=obs_summ['n']): """Likelihood for correlation coefficients of summarized data""" # Convert slope to r rho = b1*stdev_phe/stdev_iq # Fisher transformation to allow for normality assumption eps = np.arctan(rho) - np.arctan(obs_summ['correlation']) # Difference should be mean-zero return normal_like(eps, mu=np.zeros(len(n)), tau=n-3)
def test_states_single_step(): """Test custom sampling of mixture states (in isolation). """ np.random.seed(2352523) model_true = simple_state_seq_model() trans_mat_true = model_true['trans_mat_obs'] mu_true = model_true['mu'].value states_true = model_true['states_rv'].value y_obs = model_true['y_rv'].value model_test = simple_state_seq_model(y_obs=y_obs) mcmc_step = pymc.MCMC(model_test) mcmc_step.draw_from_prior() mcmc_step.use_step_method(HMMStatesStep, model_test['states_rv']) (states_step, ) = mcmc_step.step_method_dict[model_test['states_rv']] assert isinstance(states_step, HMMStatesStep) # # First, let's check that the logp function is working. # y_logps_0_true = np.array([ pymc.normal_like(y_obs[t], model_test['mu_vals'][0], 100) for t in xrange(model_test['N_obs']) ]) y_logps_1_true = np.array([ pymc.normal_like(y_obs[t], model_test['mu_vals'][1], 100) for t in xrange(model_test['N_obs']) ]) states_step.compute_y_logp() y_logps_est = states_step.y_logp_vals assert_allclose(y_logps_est[0], y_logps_0_true) assert_allclose(y_logps_est[1], y_logps_1_true) mcmc_step.sample(2000) assert_hpd(mcmc_step.states_rv, states_true, alpha=0.01)
def smooth_gamma(gamma=flat_gamma, knots=knots, tau=smoothing**-2): # the following is to include a "noise floor" so that level value # zero prior does not exert undue influence on age pattern # smoothing gamma = gamma.clip( pl.log(pl.exp(gamma).mean() / 10.), pl.inf) # only include smoothing on values within 10x of mean return mc.normal_like( pl.sqrt(pl.sum(pl.diff(gamma)**2 / pl.diff(knots))), 0, tau)
def yhat(x=self.x, y=self.y, ysigma=self.ysigma, m=self.m, sigma=self.intrinsic_sigma): yhat = m * x return np.sum([ pymc.normal_like(yhat[i], y[i], 1. / (ysigma[i]**2 + sigma**2)) for i in range(len(y)) ])
def obs(value=logit_val, logit_se=logit_se, X=covariates(d), alpha=alpha, beta=beta, gamma=gamma, sigma=sigma, age_indices=age_indices, age_weights=age_weights): # calculate study-specific rate function mu = predict_logit_rate(X, alpha, beta, gamma) mu_i = rate_for_range(mu, age_indices, age_weights) tau_i = 1. / (sigma**2 + logit_se**2) logp = mc.normal_like(x=value, mu=mu_i, tau=tau_i) return logp
def model(params=params, vars=vars, paramnames=paramnames, filters=filters, value=1.0): # Set the parameters in the model for i,param in enumerate(paramnames): if debug: print "setting ",param, " to ",params[i] self.model.parameters[param] = params[i] logp = 0 numpts = 0 for i,f in enumerate(filters): mod,err,mask = self.model(f, self.sn.data[f].MJD) m = mask*self.sn.data[f].mask if not np.sometrue(m): continue numpts += np.sum(m) tau = np.power(vars[i] + np.power(self.sn.data[f].e_mag,2),-1) logp += pymc.normal_like(self.sn.data[f].mag[m],mod[m],tau[m]) #if numpts < len(paramnames): # return -np.inf return logp
def parent_similarity(mu_child=mu_child, mu_parent=mu_parent, tau=tau): log_mu_child = pl.log(mu_child.clip(offset, pl.inf)) log_mu_parent = pl.log(mu_parent.clip(offset, pl.inf)) return mc.normal_like(log_mu_child, log_mu_parent, tau)
def gamma_potential(gamma=gamma, mu_gamma=mu_gamma, tau_gamma=1./sigma_gamma[param_mesh]**2, param_mesh=param_mesh): return mc.normal_like(gamma[param_mesh], mu_gamma[param_mesh], tau_gamma)
def X_obs(value=X_obs_vals, mu=X, tau=1.): """Data""" return normal_like(value, mu[::obs_interval], tau)
def delta_pot(delta=delta, mu=mu_delta, tau=sigma_delta**-2): return mc.normal_like(delta, mu, tau)
def mu_potential(mu1=rate_vars['unbounded_rate'], mu2=rate_vars['rate_stoch']): return mc.normal_like(mu1, mu2, .0001**-2)
def alpha_potential(alpha=alpha[i], mu=old_alpha_i.parents['mu'], tau=old_alpha_i.parents['tau']): return mc.normal_like(alpha, mu, tau)
def my_trunc_norm(value=value, mu=mu, tau=tau, a=a, b=b): if a <= value <= b: return mc.normal_like(value, mu, tau) else: return -np.inf
def emp_prior_potential(f=rate_stoch, mu=emp_prior["mu"], tau=1.0 / np.array(emp_prior["se"]) ** 2): return mc.normal_like(f, mu, tau)
def smooth_across_regions(rate_list=rate_stochs): logp = 0. for ii in range(len(rate_list)): for jj in range(ii+1, len(rate_list)): logp += mc.normal_like(np.diff(np.log(rate_list[ii]))-np.diff(np.log(rate_list[jj])), 0., 1./(.1)**2) return logp
def logp(value, theta2, y, rho): mean = y[1] + rho * (theta1 - y[0]) var = 1. - rho ^ 2 return normal_like(value, mean, 1. / var)
def p_obs(value=p, pi=pi, sigma=sigma, s=s, p_zeta=p_zeta): return mc.normal_like( pl.log(value[~i_inf] + p_zeta), pl.log(pi[~i_inf] + p_zeta), 1.0 / (sigma ** 2.0 + (s / (value + p_zeta))[~i_inf] ** 2.0), )
def A(value=A_init, mu=-1.*ones(K_max,dtype=float), tau=ones(K_max,dtype=float)): """A ~ normal(mu, tau)""" return normal_like(value, mu, tau)
def y_i(value=y, mu=y_hat, tau=tau_y): return pymc.normal_like(value, mu, tau)
def output(value=y, model_output=model_output, sigma=sigma, gamma=gamma): return gamma * pm.normal_like(y, model_output, 1. / (sigma ** 2.))
def parent_similarity(mu_child=mu_child, mu_parent=mu_parent, tau=tau): log_mu_child = np.log(mu_child.clip(offset, np.inf)) log_mu_parent = np.log(mu_parent.clip(offset, np.inf)) return mc.normal_like(log_mu_child, log_mu_parent, tau)