Beispiel #1
0
def bsem(
    items,
    factors,
    paths,
    beta=0,
    nu_sd=2.5,
    alpha_sd=2.5,
    d_beta=2.5,
    corr_items=False,
    corr_factors=False,
    g_eta=100,
    l_eta=1,
    beta_beta=1,
):
    r"""Constructs Bayesian SEM.

    Args:
        items (np.array): Array of item data.
        factors (np.array): Factor design.
        paths (np.array): Array of directed factor paths.
        beta (:obj:`float` or `'estimate'`, optional): Standard deviation of normal
            prior on cross loadings. If `'estimate'`,  beta is estimated from the data.
        nu_sd (:obj:`float`, optional): Standard deviation of normal prior on item
            intercepts.
        alpha_sd (:obj:`float`, optional): Standard deviation of normal prior on factor
            intercepts.
        d_beta (:obj:`float`, optional): Scale parameter of half-Cauchy prior on factor
            standard deviation.
        corr_factors (:obj:`bool`, optional): Allow correlated factors.
        corr_items (:obj:`bool`, optional): Allow correlated items.
        g_eta (:obj:`float`, optional): Shape parameter of LKJ prior on residual item
            correlation matrix.
        l_eta (:obj:`float`, optional): Shape parameter of LKJ prior on factor
            correlation matrix.
        beta_beta (:obj:`float`, optional): Beta parameter of beta prior on beta.

    Returns:

        None: Places model in context.

    """
    # get numbers of cases, items, and factors
    n, p = items.shape
    p_, m = factors.shape
    assert p == p_, "Mismatch between data and factor-loading matrices"
    assert paths.shape == (m, m), "Paths matrix has wrong shape"
    I = tt.eye(m, m)

    # place priors on item and factor intercepts
    nu = pm.Normal(name=r"$\nu$",
                   mu=0,
                   sd=nu_sd,
                   shape=p,
                   testval=items.mean(axis=0))
    alpha = pm.Normal(name=r"$\alpha$",
                      mu=0,
                      sd=alpha_sd,
                      shape=m,
                      testval=np.zeros(m))

    # place priors on unscaled factor loadings
    Phi = pm.Normal(name=r"$\Phi$",
                    mu=0,
                    sd=1,
                    shape=factors.shape,
                    testval=factors)

    # place priors on paths
    B = tt.zeros(paths.shape)
    npths = np.sum(paths, axis=None)
    print(npths)
    if npths > 0:
        b = pm.Normal(name=r"$b$",
                      mu=0,
                      sd=1,
                      shape=npths,
                      testval=np.ones(npths))
        # create the paths matrix
        k = 0
        for i in range(m):
            for j in range(m):
                if paths[i, j] == 1:
                    B = tt.set_subtensor(B[i, j], b[k])
                    k += 1
    Gamma = pm.Deterministic("$\Gamma$", B)

    # create masking matrix for factor loadings
    if isinstance(beta, str):
        assert beta == "estimate", f"Don't know what to do with '{beta}'"
        beta = pm.Beta(name=r"$\beta$", alpha=1, beta=beta_beta, testval=0.1)
    M = (1 - np.asarray(factors)) * beta + np.asarray(factors)

    # create scaled factor loadings
    Lambda = pm.Deterministic(r"$\Lambda$", Phi * M)

    # determine item means
    mu = nu + matrix_dot(Lambda, alpha)

    # place priors on item standard deviations
    D = pm.HalfCauchy(name=r"$D$",
                      beta=d_beta,
                      shape=p,
                      testval=items.std(axis=0))

    # place priors on item correlations
    f = pm.Lognormal.dist(sd=0.25)
    if not corr_items:
        Omega = np.eye(p)
    else:
        G = pm.LKJCholeskyCov(name=r"$G$", eta=g_eta, n=p, sd_dist=f)
        ch1 = pm.expand_packed_triangular(p, G, lower=True)
        K = tt.dot(ch1, ch1.T)
        sd1 = tt.sqrt(tt.diag(K))
        Omega = pm.Deterministic(r"$\Omega$", K / sd1[:, None] / sd1[None, :])

    # determine residual item variances and covariances
    Theta = pm.Deterministic(r"$\Theta$", D[None, :] * Omega * D[:, None])

    # place priors on factor correlations
    if not corr_factors:
        Psi = np.eye(m)
    else:
        L = pm.LKJCholeskyCov(name=r"$L$", eta=l_eta, n=m, sd_dist=f)
        ch = pm.expand_packed_triangular(m, L, lower=True)
        Gamma = tt.dot(ch, ch.T)
        sd = tt.sqrt(tt.diag(Gamma))
        Psi = pm.Deterministic(r"$\Psi$", Gamma / sd[:, None] / sd[None, :])

    # determine variances and covariances of items
    A = matrix_inverse(I - Gamma)
    C = matrix_inverse(I - Gamma.T)
    Sigma = matrix_dot(Lambda, A, Psi, C, Lambda.T) + Theta

    # place priors on observations
    pm.MvNormal(name="$Y$",
                mu=mu,
                cov=Sigma,
                observed=items,
                shape=items.shape)
Beispiel #2
0
def bcfab(items, factors, paths, nu_sd=2.5, alpha_sd=2.5):
    r"""Constructs a Bayesian CFA model in "binomial form".

    Args:
        items (np.array): Data.
        factors (np.array): Factor design matrix.
        paths (np.array): Paths design matrix.
        nu_sd (:obj:`float`, optional): Standard deviation of normal prior on item
            intercepts.
        alpha_sd (:obj:`float`, optional): Standard deviation of normal prior on factor
            intercepts.

    Returns:
        None: Places model in context.

    """
    # get numbers of cases, items, and factors
    n, p = items.shape
    p_, m = factors.shape
    assert p == p_, "Mismatch between data and factor-loading matrices"

    # priors on item intercepts
    nu = pm.Normal(name=r"$\nu$", mu=0, sd=nu_sd, shape=p, testval=np.zeros(p))

    # priors on factor intercepts
    alpha = pm.Normal(name=r"$\alpha$",
                      mu=0,
                      sd=alpha_sd,
                      shape=m,
                      testval=np.zeros(m))

    # priors on factor loadings
    l = np.asarray(factors).sum()
    lam = pm.Normal(name=r"$\lambda$",
                    mu=0,
                    sd=1,
                    shape=l,
                    testval=np.zeros(l))

    # loading matrix
    Lambda = tt.zeros(factors.shape)
    k = 0
    for i, j in product(range(p), range(m)):
        if factors[i, j] == 1:
            Lambda = tt.inc_subtensor(Lambda[i, j], lam[k])
            k += 1
    pm.Deterministic(name=r"$\Lambda$", var=Lambda)

    # priors on paths
    g = np.asarray(paths).sum()
    gam = pm.Normal(name=r"$\gamma$", mu=0, sd=1, shape=g, testval=np.zeros(g))

    # path matrix
    Gamma = tt.zeros(paths.shape)
    k = 0
    for i, j in product(range(m), range(m)):
        if paths[i, j] == 1:
            Gamma = tt.inc_subtensor(Gamma[i, j], gam[k])
            k += 1
    pm.Deterministic(name=r"$\Gamma$", var=Gamma)

    # priors on factor residuals
    zeta = pm.Normal(name=r"$\zeta$", mu=0, sigma=1, shape=(n, m), testval=0)

    # latent variables
    I = np.eye(m)
    Pi = pm.math.sigmoid(nu + matrix_dot(
        matrix_dot((alpha + zeta), matrix_inverse(I - Gamma.T)), Lambda.T))

    # observations
    pm.Binomial(name="$Y$",
                p=Pi,
                n=items.max(axis=0),
                observed=items,
                shape=items.shape)
Beispiel #3
0
def bcfa(Y, M):
    r"""Constructs a Bayesian confirmatory factor analysis (BCFA) model.

    Args:
        Y (numpy.ndarray): An $n \times p$ matrix of data where $n$ is the sample size
            and $p$ is the number of manifest variables.
        M (numpy.ndarray): An $p \times m$ matrix to describe model structure where $m$
            is the number of latent variables.

    Notes:
        $$\mathbf{Y}$$ probably should be standardized first if you are using continuous
        data.

        Entries in $\mathbf{M}$ should be [0, 1].

        $\mathbf{M}_{(i,j)}$ represents the variance of the normal prior placed on the
        regression coefficient from the $j$th latent variable to the $i$th manifest
        variable. Values of 0 remove the coefficient from the model entirely, 1
        represents a "full-strength" coefficient, and values (0, 1) are for
        cross-loadings.

    Returns:
        None: Model is placed in the context.

    """
    # counts
    n, p = Y.shape
    p_, m = M.shape
    assert p == p_, "M is the wrong shape"

    # intercepts for manifest variables
    sd = max(np.abs(Y.mean()).max() * 2.5, 2.5)
    nu = pm.Normal(name=r"$\nu$", mu=0, sd=sd, shape=p, testval=Y.mean())

    # unscaled regression coefficients
    Phi = pm.Normal(name=r"$\Phi$", mu=0, sd=1, shape=M.shape, testval=M)

    # scaled regression coefficients
    Lambda = pm.Deterministic(r"$\Lambda$", Phi * np.sqrt(M))

    # intercepts for latent variables
    alpha = pm.Normal(name=r"$\alpha$", mu=0, sd=2.5, shape=m, testval=0)

    # means of manifest variables
    mu = nu + matrix_dot(Lambda, alpha)

    # standard deviations of manifest variables
    D = pm.HalfCauchy(name=r"$D$", beta=2.5, shape=p, testval=Y.std())

    # correlations between manifest variables
    Omega = np.eye(p)

    # covariance matrix for manifest variables
    Theta = pm.Deterministic(r"$\Theta$", D[None, :] * Omega * D[:, None])

    # covariance matrix on latent variables
    f = pm.Lognormal.dist(sd=0.25)
    L = pm.LKJCholeskyCov(name=r"$L$", eta=1, n=m, sd_dist=f)
    ch = pm.expand_packed_triangular(m, L, lower=True)
    Gamma = tt.dot(ch, ch.T)
    sd = tt.sqrt(tt.diag(Gamma))
    Psi = pm.Deterministic(r"$\Psi$", Gamma / sd[:, None] / sd[None, :])

    # covariance of manifest variables
    Sigma = matrix_dot(Lambda, Psi, Lambda.T) + Theta

    # observations
    pm.MvNormal(name="Y", mu=mu, cov=Sigma, observed=Y, shape=Y.shape)
Beispiel #4
0
def bcfam(items, factors, paths, nu_sd=2.5, alpha_sd=2.5, d_beta=2.5):
    r"""Constructs a Bayesian CFA model in "multivariate form".

    Args:
        items (np.array): Data.
        factors (np.array): Factor design matrix.
        paths (np.array): Paths design matrix.
        nu_sd (:obj:`float`, optional): Standard deviation of normal prior on item
            intercepts.
        alpha_sd (:obj:`float`, optional): Standard deviation of normal prior on factor
            intercepts.
        d_beta (:obj:`float`, optional): Scale parameter of half-Cauchy prior on factor
            standard deviation.

    Returns:
        None: Places model in context.

    """
    # get numbers of cases, items, and factors
    n, p = items.shape
    p_, m = factors.shape
    assert p == p_, "Mismatch between data and factor-loading matrices"

    # priors on item intercepts
    nu = pm.Normal(name=r"$\nu$",
                   mu=0,
                   sd=nu_sd,
                   shape=p,
                   testval=items.mean(axis=0))

    # priors on factor intercepts
    alpha = pm.Normal(name=r"$\alpha$",
                      mu=0,
                      sd=alpha_sd,
                      shape=m,
                      testval=np.zeros(m))

    # priors on factor loadings
    l = np.asarray(factors).sum()
    lam = pm.Normal(name=r"$\lambda$", mu=0, sd=1, shape=l, testval=np.ones(l))

    # loading matrix
    Lambda = tt.zeros(factors.shape)
    k = 0
    for i, j in product(range(p), range(m)):
        if factors[i, j] == 1:
            Lambda = tt.inc_subtensor(Lambda[i, j], lam[k])
            k += 1
    pm.Deterministic(name=r"$\Lambda$", var=Lambda)

    # item means
    mu = nu + matrix_dot(Lambda, alpha)

    # item residual covariance matrix
    d = pm.HalfCauchy(name=r"$\sqrt{\theta}$",
                      beta=d_beta,
                      shape=p,
                      testval=items.std(axis=0))
    Theta = tt.diag(d)**2

    # factor covariance matrix
    Psi = I = np.eye(m)

    # priors on paths
    g = np.asarray(paths).sum()
    gam = pm.Normal(name=r"$\gamma$", mu=0, sd=1, shape=g, testval=np.ones(g))

    # path matrix
    Gamma = tt.zeros(paths.shape)
    k = 0
    for i, j in product(range(m), range(m)):
        if paths[i, j] == 1:
            Gamma = tt.inc_subtensor(Gamma[i, j], gam[k])
            k += 1
    pm.Deterministic(name=r"$\Gamma$", var=Gamma)

    # item covariance matrix
    Sigma = (matrix_dot(
        Lambda,
        matrix_inverse(I - Gamma),
        Psi,
        matrix_inverse(I - Gamma.T),
        Lambda.T,
    ) + Theta)

    # observations
    pm.MvNormal(name="$Y$",
                mu=mu,
                cov=Sigma,
                observed=items,
                shape=items.shape)
Beispiel #5
0
def n_star_inference(n_stars,
                     iteration,
                     elem_err=False,
                     n_init=20000,
                     n_samples=1000,
                     max_stars=100):
    ## Define which stars to use
    these_stars = np.arange(max_stars)[iteration * n_stars:(iteration + 1) *
                                       n_stars]

    ## Load in mock dataset
    mock_data = np.load(mock_data_file)  #dataset
    mu_times = mock_data.f.obs_time[these_stars]  #time of birth
    sigma_times = mock_data.f.obs_time_err[these_stars]  #error on age
    all_els = mock_data.f.elements

    full_abundances = mock_data.f.abundances[
        these_stars]  # chemical element abundances for data
    full_errors = mock_data.f.abundance_errs[
        these_stars]  # error on abundances

    # Filter out correct elements:
    els = ['C', 'Fe', 'He', 'Mg', 'N', 'Ne', 'O', 'Si']  # TNG elements
    n_els = len(els)
    el_indices = np.zeros(len(els), dtype=int)
    for e, el in enumerate(els):
        for j in range(len(all_els)):
            if els[e] == str(all_els[j]):
                el_indices[e] = j
                break
            if j == len(all_els) - 1:
                print("Failed to find element %s" % el)
    obs_abundances = full_abundances[:, el_indices]
    obs_errors = full_errors[:, el_indices]

    # Now standardize dataset
    norm_data = (obs_abundances - output_mean) / output_std
    norm_sd = obs_errors / output_std

    data_obs = norm_data.ravel()
    data_sd = np.asarray(norm_sd).ravel()

    std_times_mean = (mu_times - input_mean[-1]) / input_std[-1]
    std_times_width = sigma_times / input_std[-1]

    # Define stacked local priors
    Local_prior_mean = np.vstack([
        np.hstack([std_Theta_prior_mean, std_times_mean[i]])
        for i in range(n_stars)
    ])
    Local_prior_sigma = np.vstack([
        np.hstack([std_Theta_prior_width, std_times_width[i]])
        for i in range(n_stars)
    ])

    # Bound variables to ensure they don't exit the training parameter space
    lowBound = tt._shared(np.asarray([-5, std_log_SFR_crit, -5, std_min_time]))
    upBound = tt._shared(np.asarray([5, 5, 5, std_max_time]))

    # Create stacked mean and variances
    loc_mean = np.hstack([
        np.asarray(std_Theta_prior_mean).reshape(1, -1) *
        np.ones([n_stars, 1]),
        std_times_mean.reshape(-1, 1)
    ])
    loc_std = np.hstack([
        np.asarray(std_Theta_prior_width).reshape(1, -1) *
        np.ones([n_stars, 1]),
        std_times_width.reshape(-1, 1)
    ])

    # Share theano variables
    w0 = tt._shared(w_array_0)
    b0 = tt._shared(b_array_0)
    w1 = tt._shared(w_array_1)
    b1 = tt._shared(b_array_1)
    ones_tensor = tt.ones([n_stars, 1])
    b0_all = ma.matrix_dot(ones_tensor, b0)
    b1_all = ma.matrix_dot(ones_tensor, b1)

    # Define PyMC3 Model
    simple_model = pm.Model()

    with simple_model:
        # Define priors
        Lambda = pm.Normal('Std-Lambda',
                           mu=std_Lambda_prior_mean,
                           sd=std_Lambda_prior_width,
                           shape=(1, len(std_Lambda_prior_mean)))

        Locals = pm.Normal(
            'Std-Local',
            mu=loc_mean,
            sd=loc_std,
            shape=loc_mean.shape,
            transform=pm.distributions.transforms.Interval(lowBound, upBound),
        )
        TimeSq = tt.reshape(Locals[:, -1]**2., (n_stars, 1))

        TruLa = pm.Deterministic('Lambda',
                                 Lambda * input_std[:2] + input_mean[:2])
        TruTh = pm.Deterministic(
            'Thetas', Locals[:, :3] * input_std[2:5] + input_mean[2:5])
        TruTi = pm.Deterministic(
            'Times', Locals[:, -1] * input_std[-1] + input_mean[-1])

        ## NEURAL NET
        Lambda_all = ma.matrix_dot(ones_tensor, Lambda)
        InputVariables = ma.concatenate([Lambda_all, Locals, TimeSq], axis=1)

        layer1 = ma.matrix_dot(InputVariables, w0) + b0_all
        output = ma.matrix_dot(ma.tanh(layer1), w1) + b1_all

        if elem_err:
            # ERRORS
            #element_error = pm.Normal('Element-Error',mu=-2,sd=1,shape=(1,n_els))
            element_error = pm.HalfCauchy('Std-Element-Error',
                                          beta=0.01 / output_std,
                                          shape=(1, n_els))
            TruErr = pm.Deterministic('Element-Error',
                                      element_error * output_std)
            stacked_error = ma.matrix_dot(ones_tensor, element_error)
            tot_error = ma.sqrt(
                stacked_error**2. +
                norm_sd**2.)  # NB this is all standardized by output_std here
        else:
            tot_error = norm_sd  # NB: all quantities are standardized here

        predictions = pm.Deterministic("Predicted-Abundances",
                                       output * output_std + output_mean)

        # Define likelihood function (unravelling output to make a multivariate gaussian)
        likelihood = pm.Normal('likelihood',
                               mu=output.ravel(),
                               sd=tot_error.ravel(),
                               observed=norm_data.ravel())

    # Now sample
    init_time = ttime.time()
    with simple_model:
        samples = pm.sample(draws=n_samples,
                            chains=chains,
                            cores=cores,
                            tune=tune,
                            nuts_kwargs={'target_accept': 0.9},
                            init='advi+adapt_diag',
                            n_init=n_init)
    end_time = ttime.time() - init_time

    def construct_output(samples):
        Lambda = samples.get_values('Lambda')[:, 0, :]
        Thetas = samples.get_values('Thetas')[:, :, :]
        Times = samples.get_values('Times')[:, :]

        predictions = samples.get_values('Predicted-Abundances')[:, :, :]

        if elem_err:
            Errs = samples.get_values('Element-Error')[:, 0, :]
            return Lambda, Thetas, Times, Errs, predictions
        else:
            return Lambda, Thetas, Times, predictions

    print("Finished after %.2f seconds" % end_time)

    if elem_err:
        Lambda, Thetas, Times, Errs, predictions = construct_output(samples)
        return Lambda, Thetas, Times, end_time, Errs, predictions
    else:
        Lambda, Thetas, Times, predictions = construct_output(samples)
        return Lambda, Thetas, Times, end_time, predictions