Beispiel #1
0
def test_wrong_distribution_argument_in_list_fails():
    with pytest.raises(TypeError, match=r"every element in 'distribution' "):
        pm.Mixture(
            "mix",
            p=[0.5, 0.5],
            distributions=[pm.Normal("comp1", loc=0.0, scale=1.0), "not a distribution"],
        )
Beispiel #2
0
def _mixture_same_family(k, p, loc, scale, dat):
    m = yield pm.Normal("means", loc=loc, scale=scale)
    distribution = pm.Normal("d", loc=m, scale=scale)
    obs = yield pm.Mixture(
        "mixture", p=p, distributions=distribution, validate_args=True, observed=dat
    )
    return obs
Beispiel #3
0
def _mixture(k, p, loc, scale, dat):
    m = yield pm.Normal("means", loc=loc, scale=scale)
    distributions = [pm.Normal("d" + str(i), loc=m[..., i], scale=scale) for i in range(k)]
    obs = yield pm.Mixture(
        "mixture", p=p, distributions=distributions, validate_args=True, observed=dat
    )
    return obs
Beispiel #4
0
 def _base_dist(self, psi: TensorLike, theta: TensorLike, *args, **kwargs):
     return pm.Mixture(
         p=[psi, 1.0 - psi],
         distributions=[
             pm.Constant(value=0, name="Zero"),
             pm.Poisson(mu=theta, name="Poisson")
         ],
         name="ZeroInflatedPoisson",
     )._distribution
Beispiel #5
0
 def _base_dist(self, psi: TensorLike, mu: TensorLike, alpha: TensorLike,
                *args, **kwargs):
     return pm.Mixture(
         p=[psi, 1.0 - psi],
         distributions=[
             pm.Constant(value=0, name="Zero"),
             pm.NegativeBinomial(mu=mu, alpha=alpha, name="NegBin"),
         ],
         name="ZeroInflatedNegativeBinomial",
     )._distribution
Beispiel #6
0
    def _base_dist(self, psi: TensorLike, n: TensorLike, p: TensorLike, *args,
                   **kwargs):
        """
        Zero-inflated binomial base distribution.

        A ZeroInflatedBinomial is a mixture between a deterministic
        distribution and a Binomial distribution.
        """
        return pm.Mixture(
            p=[psi, 1.0 - psi],
            distributions=[
                pm.Constant(0, name="Zero"),
                pm.Binomial(n, p, name="Bin")
            ],
            name="ZeroInflatedBinomial",
        )._distribution
Beispiel #7
0
def test_wrong_distribution_argument_batched_fails():
    with pytest.raises(TypeError, match=r"sequence of distributions"):
        pm.Mixture("mix", p=[0.5, 0.5], distributions=tfd.Normal(0, 1))