Beispiel #1
0
def emask(cutimage, xcntr, ycntr, NXPTS, NYPTS, line_s, galflag):
    imagefile = c.imagefile
    sex_cata = c.sex_cata
    clus_cata = c.out_cata
    threshold = c.threshold
    thresh_area = c.thresh_area
    mask_reg = c.mask_reg
    values = line_s.split()
    mask_file = 'EM_' + c.fstring + '.fits'
    xcntr_o = xcntr * 1.0  #x center of the object
    ycntr_o = ycntr * 1.0  #y center of the object
    mag = float(values[7])  #Magnitude
    radius = float(values[9])  #Half light radius
    mag_zero = c.mag_zero  #magnitude zero point
    sky = float(values[10])  #sky
    pos_ang = float(values[11])  #position angle
    axis_rat = 1.0 / float(values[12])  #axis ration b/a
    area_o = float(values[13])  # object area
    major_axis = float(values[14])  #major axis of the object
    eg = 1.0 - axis_rat
    f_tmp_mask = pyfits.open('seg.fits')
    tmp_mask = f_tmp_mask[0].data
    f_tmp_mask.close()
    for line_j in open('SegCat.cat', 'r'):
        try:
            values = line_j.split()
            id_n = float(values[0])
            xcntr_n = float(values[1])  #x center of the neighbour
            ycntr_n = float(values[2])  #y center of the neighbour
            mag = float(values[7])  #Magnitude
            radius = float(values[9])  #Half light radius
            sky = float(values[10])  #sky
            pos_ang = float(values[11])  #position angle
            axis_rat = 1.0 / float(values[12])  #axis ration b/a
            si = np.sin(pos_ang * np.pi / 180.0)
            co = np.cos(pos_ang * np.pi / 180.0)
            area = float(values[13])
            maj_axis = float(values[14])  #major axis of neighbour
            eg = 1.0 - axis_rat
            one_minus_eg_sq = (1.0 - eg)**2.0
            if np.abs(xcntr_n - xcntr_o) < 5.0 and np.abs(
                    ycntr_n - ycntr_o) < 5.0 and galflag == 1:
                tmp_mask[np.where(tmp_mask == id_n)] = 0
        except:
            pass
    boxcar = np.reshape(np.ones(3 * 3), (3, 3))
    tmp_mask = pymconvolve.Convolve(tmp_mask, boxcar)
    tmp_mask[tmp_mask > 1e-5] = 1
    tmp_mask[tmp_mask != 1] = 0
    if (galflag):
        hdu = pyfits.PrimaryHDU(tmp_mask.astype(np.float32))
        hdu.writeto(mask_file)
    else:
        try:
            os.remove("BMask.fits")
        except:
            pass
        hdu = pyfits.PrimaryHDU(tmp_mask.astype(np.float32))
        hdu.writeto("BMask.fits")
Beispiel #2
0
def CLUMPNESS(z, xcntr, ycntr, pa, eg, sky, ext_rad, sigma, flag_image):
    CutImDa, cut_xcntr, cut_ycntr, SizeY, SizeX, ymin, ymax, xmin, \
    xmax, flag_out = ImSec(z, xcntr, ycntr, ext_rad)
    co = np.cos(pa * np.pi / 180.0)
    si = np.sin(pa * np.pi / 180.0)
    one_minus_eg_sq = (1.0 - eg)**2.0
    x = np.reshape(np.arange(SizeX * SizeY), (SizeY, SizeX)) % SizeX
    x = x.astype(np.float32)
    y = np.reshape(np.arange(SizeX * SizeY), (SizeY, SizeX)) / SizeX
    y = y.astype(np.float32)
    tx = (x - cut_xcntr) * co + (y - cut_ycntr) * si
    ty = (cut_xcntr - x) * si + (y - cut_ycntr) * co
    R = np.sqrt(tx**2.0 + ty**2.0 / one_minus_eg_sq)
    boxcar = np.reshape(np.ones(sigma * sigma), (sigma, sigma))
    I_sigma = pymconvolve.Convolve(CutImDa, boxcar)
    res = CutImDa - I_sigma  #the residual image
    if (flag_image):
        # the below will find the image portion which is an anulus of inner
        # radius 0.3 * eta(.2) and outer radius 1.5 * eta(.2)
        # making the residual value equal to zero inside the
        # ext_rad/20)
        res[R <= ext_rad * (1 / 20.0)] = 0
        res[R >= ext_rad] = 0
        # sum of positive values of residue
        res_inside_anulus_sum = res[res > 0].sum()
        # Average inside ext_rad. res_inside_anulus_sum will be divided by
        # z_inside_R_sum in casgm module
        z_inside_R_sum = CutImDa[R <= ext_rad].sum() / (3.14 * \
                                 ext_rad * ext_rad * np.sqrt(1 - eg**2.0))
        # FIX I dont know why 1/6 instead of 1/20.
        area = 3.14 * (ext_rad * ext_rad * np.sqrt(1 - eg**2.0)) - \
               3.14 * (ext_rad * ext_rad * (1 / 6.0) * (1 / 6.0) * \
               np.sqrt(1 - eg**2.0))
        # END
        S = res_inside_anulus_sum / area
        e1sq = CutImDa[res > 0].sum() + I_sigma[res > 0].sum() + \
               4. * CutImDa[res > 0].size * sky
    else:
        res[R >= ext_rad] = 0
        res_inside_anulus_sum = res[np.where(res > 0)].sum()
        area = 3.14 * ext_rad**2.0
        S = res_inside_anulus_sum / area
        z_inside_R_sum = 0  # just to return the value in the end
        e1sq = CutImDa[res > 0].sum() + I_sigma[res > 0].sum() + \
               2. * CutImDa[res > 0].size * sky
    e2sq = res_inside_anulus_sum**2.0
    e3sq = CutImDa[R <= ext_rad].sum() + 2 * CutImDa[R <= ext_rad].size * sky
    e4sq = (CutImDa[R <= ext_rad].sum())**2.0
    if (e2sq != 0):
        error = e1sq / e2sq
    else:
        print "Could not find error"
        error = 0.0
    return S, error, z_inside_R_sum, e3sq, e4sq
Beispiel #3
0
def FindYetSky(gimg, X0, Y0):
    RunSegSex(gimg)
    f = pyfits.open(gimg)
    z = f[0].data
    f.close()
    f = pyfits.open('seg.fits')
    zm = f[0].data
    f.close()
    SexSky, SkyYet, SkyMed, SkyMin, SkyQua, SkySig = 9999, 9999, 9999, \
    9999, 9999, 9999
    for l_s in open('SegCat.cat'):
        v_s = l_s.split()
        try:
            SexId = n.float(v_s[0])
            xcntr = n.float(v_s[1])
            ycntr = n.float(v_s[2])
            pa = n.float(v_s[11])
            bbya = 1.0 / n.float(v_s[12])
            a = n.float(v_s[14]) * 3.0
            b = a * bbya
            hr = n.float(v_s[9])
            sky = n.float(v_s[10])
            if n.abs(X0 - xcntr) < 5.0 and n.abs(Y0 - ycntr) < 5.0:
                boxcar = np.reshape(np.ones(3 * 3), (3, 3))
                zm = pymconvolve.Convolve(zm, boxcar)
                zm[n.where(zm > 0)] = 1
                SkyQua = []
                for ii in n.arange(1, 5):
                    SkyQua.append(QuarterMask(z, zm, xcntr-1.0, ycntr-1.0, \
                                  bbya, pa, ii))
                SkyQua = n.array(SkyQua)
                SexSky = sky
                tmpstd = n.std(ma.masked_array(z, zm).compressed())
                tmpmed = n.median(ma.masked_array(z, zm).compressed())
                zm[n.where((z - tmpmed) > 1.3 * tmpstd)] = 1
                SkyYet = n.median(ma.masked_array(z, zm).compressed())
                SkyMed = n.median(SkyQua)
                SkyMin = n.min(SkyQua)
                SkySig = n.std(ma.masked_array(z, zm).compressed())
                #               os.system('rm -f SegCat.cat default_seg.sex seg.fits')
                break
        except:
            pass
    return SexSky, SkyYet, SkyMed, SkyMin, SkyQua, SkySig
Beispiel #4
0
def gmask(cutimage, xcntr, ycntr, NXPTS, NYPTS, line_s):
    imagefile = c.imagefile
    sex_cata = c.sex_cata
    threshold = c.threshold
    thresh_area = c.thresh_area
    mask_reg = c.mask_reg
    avoidme = c.avoidme

    target = SEx_obj(NXPTS, NYPTS, line_s)

    mask_file = 'M_' + c.fstring + '.fits'
    mag_zero = c.mag_zero  #magnitude zero point

    f_tmp_mask = pyfits.open('seg.fits')
    tmp_mask = f_tmp_mask[0].data
    f_tmp_mask.close()
    for line_j in open('SegCat.cat', 'r'):
        if line_j[0] != '#':  #line is not a comment
            #try:
            neighbor = SEx_obj(NXPTS, NYPTS, line_j)

            if target.mask_or_fit(neighbor, threshold, thresh_area,
                                  avoidme) != 1:
                tmp_mask[np.where(tmp_mask == neighbor.sex_num)] = 0

        #except:
        #    pass
    if c.NoMask:
        tmp_mask[np.where(tmp_mask > 0)] = 0
    elif c.NormMask:
        pass
    boxcar = np.reshape(np.ones(3 * 3), (3, 3))
    tmp_mask = pymconvolve.Convolve(tmp_mask, boxcar)
    tmp_mask[tmp_mask > 1e-5] = 1
    tmp_mask[tmp_mask != 1] = 0
    hdu = pyfits.PrimaryHDU(tmp_mask.astype(np.float32))
    hdu.writeto(mask_file)
Beispiel #5
0
def segmentation(zextract, xcntr, ycntr, pa, eg, sky, r20, r50, r80, \
                 ext_rad, sigma, skysig, lower):
    """This function find the segmentation map"""
    def gini_coef(I):
        """This will calculate Gini Coefficient"""
        oneD_I = np.reshape(I, (1,-1))
        sorted_I = np.sort(oneD_I)
        sorted_I = sorted_I[sorted_I > 0]
        nn = sorted_I.size
        average = np.abs(sorted_I).mean()
        sumI = 0.0
        for i in range(nn):
            sumI += (2 * (i + 1) - nn - 1) * abs(sorted_I[i])
        G = sumI / (average * nn * (nn - 1))
        return G
    sigma = int(sigma)
    co= np.cos(pa*np.pi/180.0)
    si= np.sin(pa*np.pi/180.0)
    one_minus_eg_sq = (1.0 - eg)**2.0
    SizeY = zextract.shape[0] # Y size
    SizeX = zextract.shape[1] # X size
    x = np.reshape(np.arange(SizeX * SizeY), (SizeY, SizeX)) % SizeX
    x = x.astype(np.float32)
    y = np.reshape(np.arange(SizeX * SizeY), (SizeY, SizeX)) / SizeX
    y = y.astype(np.float32)
    rx = (x - xcntr)* co + (y - ycntr) * si
    ry = (xcntr - x) * si + (y - ycntr) * co
    R = np.sqrt(rx**2.0 + ry**2.0 / one_minus_eg_sq)
    boxcar = np.reshape(np.ones(sigma * sigma), (sigma, sigma))    
    I_sigma = pymconvolve.Convolve(zextract, boxcar) 
    lower_thre = (I_sigma[R <= ext_rad / 1.5].sum() - \
                  I_sigma[R <= ext_rad / 1.5 - 1].sum()) / \
                 (3.14 * ((ext_rad / 1.5)**2. - (ext_rad / 1.5 - 1)**2.))
    upper_thre = 10.0 * skysig # the upper threshold
    #The below will finds the segmentation image
    I0 = np.where(R > (2.5 / 1.5) * ext_rad, 0, zextract)
    I1 = np.where(I_sigma < lower_thre, 0, I0)
    I2 = np.where(R > (ext_rad / 1.5 - (0.02 * ext_rad)), 0, I1)
    I3 = np.where(R <= (ext_rad / 1.5 - (0.02 * ext_rad)), 0, I1)
    I4 = np.where(I_sigma > upper_thre, 0, I3)
    I = I2 + I4
    G = gini_coef(I)
    mo = moment(I, xcntr, ycntr)
    M = mo.moment_of_light[0]
    # FIX the following will calculate the Gini coef. & M20 of the residual
    # image of asymmetry. Now it is turning off. In the future it can be 
    # replaced with the Gini coef. of residual galfit image
    # f = pyfits.open(c.outdir +'AResidual.fits')
    # res =  f[0].data
    # f.close()
    # if os.access(c.outdir +'AResidual.fits', os.F_OK):
    #    os.remove(c.outdir +'AResidual.fits')
    # res1=np.where(I == 0, 0, res)
    # G_res = gini_coef(res1)
    # mo1=moment(res, xcntr, ycntr)
    # M_res = mo1.moment_of_light[0]
    G_res = 0.0
    M_res = 0.0
    # END
    I80 = np.where(R > r80, 0, zextract)
    G80 = gini_coef(I80)
    mo2 = moment(I80, xcntr, ycntr)
    M80 = mo2.moment_of_light[0]

    I50 = np.where(R > r50, 0, zextract)
    G50 = gini_coef(I50)
    mo3 = moment(I50, xcntr, ycntr)
    M_50 = mo3.moment_of_light[0]

    I20 = np.where(R > r20, 0, zextract)
    G20 = gini_coef(I20)
    mo4 = moment(I20, xcntr, ycntr)
    M_20 = mo4.moment_of_light[0]
    return G, G_res, G80, G50, G20, M, M_res, M80, M_50, M_20