Beispiel #1
0
def create_bb_points_function(bb_diameter):
    max_distance = bb_diameter * 0.5
    min_distance = 0
    num_steps = 11
    min_dist_between_points = (max_distance - min_distance) / num_steps
    distances = np.arange(min_distance, max_distance + min_dist_between_points,
                          min_dist_between_points)

    x = []
    y = []
    dist = []

    for _, distance in enumerate(distances):
        (
            new_x,
            new_y,
        ) = pymedphys._utilities.createshells.calculate_coordinates_shell_2d(  # pylint: disable = protected-access
            distance, min_dist_between_points)
        x.append(new_x)
        y.append(new_y)
        dist.append(distance * np.ones_like(new_x))

    x = np.concatenate(x)
    y = np.concatenate(y)
    dist = np.concatenate(dist)

    def points_to_check(bb_centre):
        x_shifted = x + bb_centre[0]
        y_shifted = y + bb_centre[1]

        return x_shifted, y_shifted

    return points_to_check, dist
Beispiel #2
0
def apply_negative(column):
    result = np.ones_like(column).astype(np.float64) * np.nan
    negative_values = column.values > 2**15

    result[negative_values] = column[negative_values] - 2**16
    result[np.invert(negative_values)] = column[np.invert(negative_values)]

    if np.any(np.isnan(result)):
        raise Exception("Not all column values were converted")

    return result
Beispiel #3
0
def gamma_filter_brute_force(axes_reference,
                             dose_reference,
                             axes_evaluation,
                             dose_evaluation,
                             distance_mm_threshold,
                             dose_threshold,
                             lower_dose_cutoff=0,
                             **_):

    xx_ref, yy_ref, zz_ref = np.meshgrid(*axes_reference, indexing="ij")
    gamma_array = np.ones_like(dose_evaluation).astype(np.float) * np.nan

    mesh_index = np.meshgrid(
        *[np.arange(len(coord_eval)) for coord_eval in axes_evaluation])

    eval_index = np.reshape(np.array(mesh_index), (3, -1))
    run_index = np.arange(np.shape(eval_index)[1])
    np.random.shuffle(run_index)

    sys.stdout.write("    ")

    for counter, point_index in enumerate(run_index):
        i, j, k = eval_index[:, point_index]
        eval_x = axes_evaluation[0][i]
        eval_y = axes_evaluation[1][j]
        eval_z = axes_evaluation[2][k]

        if dose_evaluation[i, j, k] < lower_dose_cutoff:
            continue

        distance = np.sqrt((xx_ref - eval_x)**2 + (yy_ref - eval_y)**2 +
                           (zz_ref - eval_z)**2)

        dose_diff = dose_evaluation[i, j, k] - dose_reference

        gamma = np.min(
            np.sqrt((dose_diff / dose_threshold)**2 +
                    (distance / distance_mm_threshold)**2))

        gamma_array[i, j, k] = gamma

        if counter // 30 == counter / 30:
            percent_pass = str(
                np.round(calculate_pass_rate(gamma_array), decimals=1))
            sys.stdout.write(
                "\rPercent Pass: {0}% | Percent Complete: {1:.2f}%".format(
                    percent_pass, counter / np.shape(eval_index)[1] * 100))
            sys.stdout.flush()

    return calculate_pass_rate(gamma_array)
Beispiel #4
0
def apply_transform(xx, yy, transform):
    xx = np.array(xx, copy=False)
    yy = np.array(yy, copy=False)

    xx_flat = np.ravel(xx)
    transformed = transform @ np.vstack(
        [xx_flat, np.ravel(yy), np.ones_like(xx_flat)])

    xx_transformed = transformed[0]
    yy_transformed = transformed[1]

    xx_transformed.shape = xx.shape
    yy_transformed.shape = yy.shape

    return xx_transformed, yy_transformed
Beispiel #5
0
def _calc_blocked_t(travel_diff, grid_resolution):
    blocked_t = np.ones_like(travel_diff) * np.nan

    fully_blocked = travel_diff <= -grid_resolution / 2
    fully_open = travel_diff >= grid_resolution / 2
    blocked_t[fully_blocked] = 1
    blocked_t[fully_open] = 0

    transient = ~fully_blocked & ~fully_open

    blocked_t[transient] = (-travel_diff[transient] +
                            grid_resolution / 2) / grid_resolution

    assert np.all(~np.isnan(blocked_t))

    return blocked_t
Beispiel #6
0
def format_coords_for_dicom(all_merged):
    dicom_format_coords_by_z = {}

    for z, merged in all_merged.items():
        coords = get_coords_from_polygon_or_multipolygon(merged)
        new_contour_data = []
        for coord in coords:
            stacked_coords = np.hstack(
                list(zip(coord[0], coord[1], z * np.ones_like(coord[1]))))
            stacked_coords = np.round(stacked_coords, 1)
            stacked_coords = stacked_coords.tolist()

            new_contour_data.append(stacked_coords)

        dicom_format_coords_by_z[z] = new_contour_data

    return dicom_format_coords_by_z
Beispiel #7
0
def calculate_coordinates_shell_3d(distance, distance_step_size):
    """Create points along the surface of a sphere (a shell) where no gap
    between points is larger than the defined distance_step_size"""

    number_of_rows = np.ceil(np.pi * distance / distance_step_size).astype(int) + 1

    elevation = np.linspace(0, np.pi, number_of_rows)
    row_radii = distance * np.sin(elevation)
    row_circumference = 2 * np.pi * row_radii
    amount_in_row = np.ceil(row_circumference / distance_step_size).astype(int) + 1

    x_coords = []
    y_coords = []
    z_coords = []
    for i, phi in enumerate(elevation):
        azimuth = np.linspace(0, 2 * np.pi, amount_in_row[i] + 1)[:-1:]
        x_coords.append(distance * np.sin(phi) * np.cos(azimuth))
        y_coords.append(distance * np.sin(phi) * np.sin(azimuth))
        z_coords.append(distance * np.cos(phi) * np.ones_like(azimuth))

    return (np.hstack(x_coords), np.hstack(y_coords), np.hstack(z_coords))
Beispiel #8
0
def calculate_min_dose_difference(options, distance, to_be_checked,
                                  distance_step_size):
    """Determine the minimum dose difference.

    Calculated for a given distance from each reference point.
    """

    min_relative_dose_difference = np.nan * np.ones_like(
        options.flat_dose_reference[to_be_checked])

    num_dimensions = np.shape(options.flat_mesh_axes_reference)[0]

    coordinates_at_distance_shell = pymedphys._utilities.createshells.calculate_coordinates_shell(  # pylint: disable = protected-access
        distance, num_dimensions, distance_step_size)

    num_points_in_shell = np.shape(coordinates_at_distance_shell)[1]

    estimated_ram_needed = (np.uint64(num_points_in_shell) *
                            np.uint64(np.count_nonzero(to_be_checked)) *
                            np.uint64(32) * np.uint64(num_dimensions) *
                            np.uint64(2))

    num_slices = np.floor(
        estimated_ram_needed / options.ram_available).astype(int) + 1

    if not options.quiet:
        sys.stdout.write(
            " | Points tested per reference point: {} | RAM split count: {}".
            format(num_points_in_shell, num_slices))
        sys.stdout.flush()

    all_checks = np.where(np.ravel(to_be_checked))[0]
    index = np.arange(len(all_checks))
    sliced = np.array_split(index, num_slices)

    sorted_sliced = [np.sort(current_slice) for current_slice in sliced]

    for current_slice in sorted_sliced:
        to_be_checked_sliced = np.full_like(to_be_checked, False, dtype=bool)
        to_be_checked_sliced[  # pylint: disable=unsupported-assignment-operation
            all_checks[current_slice]] = True

        assert np.all(to_be_checked[to_be_checked_sliced])

        axes_reference_to_be_checked = options.flat_mesh_axes_reference[:,
                                                                        to_be_checked_sliced]

        evaluation_dose = interpolate_evaluation_dose_at_distance(
            options.evaluation_interpolation,
            axes_reference_to_be_checked,
            coordinates_at_distance_shell,
        )

        if options.local_gamma:
            with np.errstate(divide="ignore"):
                relative_dose_difference = (
                    evaluation_dose -
                    options.flat_dose_reference[to_be_checked_sliced][None, :]
                ) / (
                    options.flat_dose_reference[to_be_checked_sliced][None, :])
        else:
            relative_dose_difference = (
                evaluation_dose -
                options.flat_dose_reference[to_be_checked_sliced][None, :]
            ) / options.global_normalisation

        min_relative_dose_difference[current_slice] = np.min(
            np.abs(relative_dose_difference), axis=0)

    return min_relative_dose_difference