Beispiel #1
0
    def _next(self):

        # all place visited so far
        _X, _F, _evaluated_by_algorithm = self.evaluator.history.get("X", "F", "algorithm")

        # collect attributes from each algorithm and determine whether it has to be replaced or not
        pop, F, n_evals = [], [], []
        for k, algorithm in enumerate(self.algorithms):

            # collect some data from the current algorithms
            _pop = algorithm.pop

            # if the algorithm has terminated or not
            has_finished = algorithm.termination.has_terminated(algorithm)

            # if the area was already explored before
            closest_dist_to_others = vectorized_cdist(_pop.get("X"), _X[_evaluated_by_algorithm != algorithm],
                                                      func_dist=norm_euclidean_distance(self.problem))
            too_close_to_others = (closest_dist_to_others.min(axis=1) < 1e-3).all()

            # whether the algorithm is the current best - if yes it will not be replaced
            current_best = self.evaluator.opt.get("F") == _pop.get("F").min()

            # algorithm not really useful anymore
            if not current_best and (has_finished or too_close_to_others):
                # find a suitable x0 which is far from other or has good expectations
                self.sampling.criterion = lambda X: vectorized_cdist(X, _X).min()
                X = self.sampling.do(self.problem, self.n_initial_samples).get("X")

                # distance in x space to other existing points
                x_dist = vectorized_cdist(X, _X, func_dist=norm_euclidean_distance(self.problem)).min(axis=1)
                f_pred, f_uncert = predict_by_nearest_neighbors(_X, _F, X, 5, self.problem)
                fronts = NonDominatedSorting().do(np.column_stack([- x_dist, f_pred, f_uncert]))
                I = np.random.choice(fronts[0])

                # I = vectorized_cdist(X, _X, func_dist=norm_euclidean_distance(self.problem)).min(axis=1).argmax()

                # choose the one with the largest distance to current solutions
                x0 = X[[I]]

                # replace the current algorithm
                algorithm = get_algorithm("nelder-mead",
                                          problem=self.problem,
                                          x0=x0,
                                          termination=NelderAndMeadTermination(x_tol=1e-3, f_tol=1e-3),
                                          evaluator=self.evaluator,
                                          )
                algorithm.initialize()
                self.algorithms[k] = algorithm

            pop.append(algorithm.pop)
            F.append(algorithm.pop.get("F"))
            n_evals.append(self.evaluator.algorithms[algorithm])

        # get the values of all algorithms as arrays
        F, n_evals = np.array(F), np.array(n_evals)
        rewards = 1 - normalize(F.min(axis=1))[:, 0]
        n_evals_total = self.evaluator.n_eval - self.evaluator.algorithms[self]

        # calculate the upper confidence bound
        ucb = rewards + 0.95 * np.sqrt(np.log(n_evals_total) / n_evals)

        I = ucb.argmax()
        self.algorithms[I].next()

        # create the population object with all algorithms
        self.pop = Population.create(*pop)

        # update the current optimum
        self.opt = self.evaluator.opt
Beispiel #2
0
 def _step(self, optimizer, X, scalings):
     obj, grad = value_and_grad(calc_potential_energy)(scalings, X)
     scalings = optimizer.next(scalings, np.array(grad))
     scalings = normalize(scalings, xl=0, xu=scalings.max())
     return scalings, obj