Beispiel #1
0
 def __init__(self, args):
     self.args = args
     self.first = True
     self.problem = thermal_block_problem(num_blocks=(args['XBLOCKS'], args['YBLOCKS']),
                                          parameter_range=(PARAM_MIN, PARAM_MAX))
     self.m, pack = discretize_stationary_cg(self.problem, diameter=1. / args['--grid'])
     self.grid = pack['grid']
Beispiel #2
0
 def __init__(self, args):
     self.args = args
     self.first = True
     self.problem = thermal_block_problem(num_blocks=(args['XBLOCKS'], args['YBLOCKS']),
                                          parameter_range=(PARAM_MIN, PARAM_MAX))
     self.discretization, pack = discretize_stationary_cg(self.problem, diameter=1. / args['--grid'])
     self.grid = pack['grid']
Beispiel #3
0
 def __init__(self, xblocks, yblocks, snapshots, rbsize, grid, product):
     self.snapshots, self.rbsize, self.product = snapshots, rbsize, product
     self.xblocks, self.yblocks = xblocks, yblocks
     self.first = True
     self.problem = thermal_block_problem(num_blocks=(xblocks, yblocks),
                                          parameter_range=(PARAM_MIN,
                                                           PARAM_MAX))
     self.m, pack = discretize_stationary_cg(self.problem,
                                             diameter=1. / grid)
     self.grid = pack['grid']
Beispiel #4
0
def thermalblock_factory(xblocks, yblocks, diameter, seed):
    from pymor.analyticalproblems.thermalblock import thermal_block_problem
    from pymor.discretizers.cg import discretize_stationary_cg
    from pymor.functions.basic import GenericFunction
    from pymor.operators.cg import InterpolationOperator
    p = thermal_block_problem((xblocks, yblocks))
    d, d_data = discretize_stationary_cg(p, diameter)
    f = GenericFunction(lambda X, mu: X[..., 0]**mu['exp'] + X[..., 1],
                        dim_domain=2, parameter_type={'exp': ()})
    iop = InterpolationOperator(d_data['grid'], f)
    U = d.operator.source.empty()
    V = d.operator.range.empty()
    np.random.seed(seed)
    for exp in np.random.random(5):
        U.append(iop.as_vector(exp))
    for exp in np.random.random(6):
        V.append(iop.as_vector(exp))
    return d.operator, d.parameter_space.sample_randomly(1, seed=seed)[0], U, V, d.h1_product, d.l2_product
Beispiel #5
0
def thermalblock_factory(xblocks, yblocks, diameter, seed):
    from pymor.analyticalproblems.thermalblock import thermal_block_problem
    from pymor.discretizers.builtin import discretize_stationary_cg
    from pymor.functions.basic import GenericFunction
    from pymor.discretizers.builtin.cg import InterpolationOperator
    p = thermal_block_problem((xblocks, yblocks))
    m, m_data = discretize_stationary_cg(p, diameter)
    f = GenericFunction(lambda X, mu: X[..., 0]**mu['exp'] + X[..., 1],
                        dim_domain=2, parameter_type={'exp': ()})
    iop = InterpolationOperator(m_data['grid'], f)
    U = m.operator.source.empty()
    V = m.operator.range.empty()
    np.random.seed(seed)
    for exp in np.random.random(5):
        U.append(iop.as_vector(exp))
    for exp in np.random.random(6):
        V.append(iop.as_vector(exp))
    return m.operator, m.parameter_space.sample_randomly(1, seed=seed)[0], U, V, m.h1_product, m.l2_product
Beispiel #6
0
def discretize_pymor(xblocks, yblocks, grid_num_intervals, use_list_vector_array):
    from pymor.analyticalproblems.thermalblock import thermal_block_problem
    from pymor.discretizers.builtin import discretize_stationary_cg
    from pymor.playground.discretizers.numpylistvectorarray import convert_to_numpy_list_vector_array

    print('Discretize ...')
    # setup analytical problem
    problem = thermal_block_problem(num_blocks=(xblocks, yblocks))

    # discretize using continuous finite elements
    fom, _ = discretize_stationary_cg(problem, diameter=1. / grid_num_intervals)

    if use_list_vector_array:
        fom = convert_to_numpy_list_vector_array(fom)

    summary = f'''pyMOR model:
   number of blocks: {xblocks}x{yblocks}
   grid intervals:   {grid_num_intervals}
   ListVectorArray:  {use_list_vector_array}
'''

    return fom, summary
Beispiel #7
0
def discretize_pymor(xblocks, yblocks, grid_num_intervals, use_list_vector_array):
    from pymor.analyticalproblems.thermalblock import thermal_block_problem
    from pymor.discretizers.cg import discretize_stationary_cg
    from pymor.playground.discretizers.numpylistvectorarray import convert_to_numpy_list_vector_array

    print('Discretize ...')
    # setup analytical problem
    problem = thermal_block_problem(num_blocks=(xblocks, yblocks))

    # discretize using continuous finite elements
    d, _ = discretize_stationary_cg(problem, diameter=1. / grid_num_intervals)

    if use_list_vector_array:
        d = convert_to_numpy_list_vector_array(d)

    summary = '''pyMOR discretization:
   number of blocks: {xblocks}x{yblocks}
   grid intervals:   {grid_num_intervals}
   ListVectorArray:  {use_list_vector_array}
'''.format(**locals())

    return d, summary
def thermalblock_demo(args):
    args['--grid'] = int(args['--grid'])
    args['RBSIZE'] = int(args['RBSIZE'])
    args['--test'] = int(args['--test'])
    args['--ipython-engines'] = int(args['--ipython-engines'])
    args['--extension-alg'] = args['--extension-alg'].lower()
    assert args['--extension-alg'] in {'trivial', 'gram_schmidt'}
    args['--product'] = args['--product'].lower()
    assert args['--product'] in {'trivial', 'h1'}
    args['--reductor'] = args['--reductor'].lower()
    assert args['--reductor'] in {'traditional', 'residual_basis'}
    args['--cache-region'] = args['--cache-region'].lower()
    args['--validation-mus'] = int(args['--validation-mus'])
    args['--rho'] = float(args['--rho'])
    args['--gamma'] = float(args['--gamma'])
    args['--theta'] = float(args['--theta'])

    problem = thermal_block_problem(num_blocks=(2, 2))
    functionals = [
        ExpressionParameterFunctional('diffusion[0]', {'diffusion': 2}),
        ExpressionParameterFunctional('diffusion[1]**2', {'diffusion': 2}),
        ExpressionParameterFunctional('diffusion[0]', {'diffusion': 2}),
        ExpressionParameterFunctional('diffusion[1]', {'diffusion': 2})
    ]
    problem = problem.with_(
        diffusion=problem.diffusion.with_(coefficients=functionals), )

    print('Discretize ...')
    fom, _ = discretize_stationary_cg(problem, diameter=1. / args['--grid'])

    if args['--list-vector-array']:
        from pymor.discretizers.builtin.list import convert_to_numpy_list_vector_array
        fom = convert_to_numpy_list_vector_array(fom)

    if args['--cache-region'] != 'none':
        # building a cache_id is only needed for persistent CacheRegions
        cache_id = f"pymordemos.thermalblock_adaptive {args['--grid']}"
        fom.enable_caching(args['--cache-region'], cache_id)

    if args['--plot-solutions']:
        print('Showing some solutions')
        Us = ()
        legend = ()
        for mu in problem.parameter_space.sample_randomly(2):
            print(f"Solving for diffusion = \n{mu['diffusion']} ... ")
            sys.stdout.flush()
            Us = Us + (fom.solve(mu), )
            legend = legend + (str(mu['diffusion']), )
        fom.visualize(Us,
                      legend=legend,
                      title='Detailed Solutions for different parameters',
                      block=True)

    print('RB generation ...')

    product = fom.h1_0_semi_product if args['--product'] == 'h1' else None
    coercivity_estimator = ExpressionParameterFunctional(
        'min([diffusion[0], diffusion[1]**2])', fom.parameters)
    reductors = {
        'residual_basis':
        CoerciveRBReductor(fom,
                           product=product,
                           coercivity_estimator=coercivity_estimator),
        'traditional':
        SimpleCoerciveRBReductor(fom,
                                 product=product,
                                 coercivity_estimator=coercivity_estimator)
    }
    reductor = reductors[args['--reductor']]

    pool = new_parallel_pool(ipython_num_engines=args['--ipython-engines'],
                             ipython_profile=args['--ipython-profile'])
    greedy_data = rb_adaptive_greedy(
        fom,
        reductor,
        problem.parameter_space,
        validation_mus=args['--validation-mus'],
        rho=args['--rho'],
        gamma=args['--gamma'],
        theta=args['--theta'],
        use_estimator=not args['--without-estimator'],
        error_norm=fom.h1_0_semi_norm,
        max_extensions=args['RBSIZE'],
        visualize=not args['--no-visualize-refinement'])

    rom = greedy_data['rom']

    if args['--pickle']:
        print(
            f"\nWriting reduced model to file {args['--pickle']}_reduced ...")
        with open(args['--pickle'] + '_reduced', 'wb') as f:
            dump(rom, f)
        print(
            f"Writing detailed model and reductor to file {args['--pickle']}_detailed ..."
        )
        with open(args['--pickle'] + '_detailed', 'wb') as f:
            dump((fom, reductor), f)

    print('\nSearching for maximum error on random snapshots ...')

    results = reduction_error_analysis(
        rom,
        fom=fom,
        reductor=reductor,
        estimator=True,
        error_norms=(fom.h1_0_semi_norm, ),
        condition=True,
        test_mus=problem.parameter_space.sample_randomly(args['--test']),
        basis_sizes=25 if args['--plot-error-sequence'] else 1,
        plot=True,
        pool=pool)

    real_rb_size = rom.solution_space.dim

    print('''
*** RESULTS ***

Problem:
   number of blocks:                   2x2
   h:                                  sqrt(2)/{args[--grid]}

Greedy basis generation:
   estimator disabled:                 {args[--without-estimator]}
   extension method:                   {args[--extension-alg]}
   product:                            {args[--product]}
   prescribed basis size:              {args[RBSIZE]}
   actual basis size:                  {real_rb_size}
   elapsed time:                       {greedy_data[time]}
'''.format(**locals()))
    print(results['summary'])

    sys.stdout.flush()

    if args['--plot-error-sequence']:
        from matplotlib import pyplot as plt
        plt.show(results['figure'])
    if args['--plot-err']:
        mumax = results['max_error_mus'][0, -1]
        U = fom.solve(mumax)
        URB = reductor.reconstruct(rom.solve(mumax))
        fom.visualize(
            (U, URB, U - URB),
            legend=('Detailed Solution', 'Reduced Solution', 'Error'),
            title='Maximum Error Solution',
            separate_colorbars=True,
            block=True)
Beispiel #9
0
# Copyright 2013-2017 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)

import pytest

from pymor.domaindescriptions.basic import RectDomain
from pymor.analyticalproblems.burgers import burgers_problem, burgers_problem_2d
from pymor.analyticalproblems.elliptic import StationaryProblem
from pymor.analyticalproblems.helmholtz import helmholtz_problem
from pymor.analyticalproblems.thermalblock import thermal_block_problem
from pymor.functions.basic import GenericFunction, ConstantFunction, LincombFunction
from pymor.parameters.functionals import ExpressionParameterFunctional


picklable_thermalblock_problems = \
    [thermal_block_problem(),
     thermal_block_problem(num_blocks=(3, 2)),
     thermal_block_problem(num_blocks=(1, 1)),
     thermal_block_problem(num_blocks=(2, 2), parameter_range=(1., 100.))]


non_picklable_thermalblock_problems = \
    [thermal_block_problem(num_blocks=(1, 3), parameter_range=(0.4, 0.5)).with_(
        rhs=GenericFunction(dim_domain=2, mapping=lambda X: X[..., 0] + X[..., 1]))]

thermalblock_problems = picklable_thermalblock_problems + non_picklable_thermalblock_problems


burgers_problems = \
    [burgers_problem(),
     burgers_problem(v=0.2, circle=False),
# Copyright 2013-2018 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)

import pytest

from pymor.domaindescriptions.basic import RectDomain
from pymor.analyticalproblems.burgers import burgers_problem, burgers_problem_2d
from pymor.analyticalproblems.elliptic import StationaryProblem
from pymor.analyticalproblems.helmholtz import helmholtz_problem
from pymor.analyticalproblems.thermalblock import thermal_block_problem
from pymor.functions.basic import GenericFunction, ConstantFunction, LincombFunction
from pymor.parameters.functionals import ExpressionParameterFunctional


picklable_thermalblock_problems = \
    [thermal_block_problem(),
     thermal_block_problem(num_blocks=(3, 2)),
     thermal_block_problem(num_blocks=(1, 1)),
     thermal_block_problem(num_blocks=(2, 2), parameter_range=(1., 100.))]


non_picklable_thermalblock_problems = \
    [thermal_block_problem(num_blocks=(1, 3), parameter_range=(0.4, 0.5)).with_(
        rhs=GenericFunction(dim_domain=2, mapping=lambda X: X[..., 0] + X[..., 1]))]


thermalblock_problems = picklable_thermalblock_problems + non_picklable_thermalblock_problems


burgers_problems = \
    [burgers_problem(),
Beispiel #11
0
def thermalblock_demo(args):
    args['--grid'] = int(args['--grid'])
    args['RBSIZE'] = int(args['RBSIZE'])
    args['--test'] = int(args['--test'])
    args['--ipython-engines'] = int(args['--ipython-engines'])
    args['--estimator-norm'] = args['--estimator-norm'].lower()
    assert args['--estimator-norm'] in {'trivial', 'h1'}
    args['--extension-alg'] = args['--extension-alg'].lower()
    assert args['--extension-alg'] in {'trivial', 'gram_schmidt', 'h1_gram_schmidt'}
    args['--reductor'] = args['--reductor'].lower()
    assert args['--reductor'] in {'traditional', 'residual_basis'}
    args['--cache-region'] = args['--cache-region'].lower()
    args['--validation-mus'] = int(args['--validation-mus'])
    args['--rho'] = float(args['--rho'])
    args['--gamma'] = float(args['--gamma'])
    args['--theta'] = float(args['--theta'])

    print('Solving on TriaGrid(({0},{0}))'.format(args['--grid']))

    print('Setup Problem ...')
    problem = thermal_block_problem(num_blocks=(2, 2))
    functionals = [ExpressionParameterFunctional('diffusion[0]', {'diffusion': (2,)}),
                   ExpressionParameterFunctional('diffusion[1]**2', {'diffusion': (2,)}),
                   ExpressionParameterFunctional('diffusion[0]', {'diffusion': (2,)}),
                   ExpressionParameterFunctional('diffusion[1]', {'diffusion': (2,)})]
    problem = StationaryProblem(domain=problem.domain,
                              diffusion=problem.diffusion.with_(coefficients=functionals),
                              rhs=problem.rhs,
                              parameter_space=CubicParameterSpace({'diffusion': (2,)}, 0.1, 1.))

    print('Discretize ...')
    discretization, _ = discretize_stationary_cg(problem, diameter=1. / args['--grid'])

    if args['--list-vector-array']:
        from pymor.playground.discretizers.numpylistvectorarray import convert_to_numpy_list_vector_array
        discretization = convert_to_numpy_list_vector_array(discretization)

    if args['--cache-region'] != 'none':
        discretization.enable_caching(args['--cache-region'])

    print('The parameter type is {}'.format(discretization.parameter_type))

    if args['--plot-solutions']:
        print('Showing some solutions')
        Us = ()
        legend = ()
        for mu in discretization.parameter_space.sample_randomly(2):
            print('Solving for diffusion = \n{} ... '.format(mu['diffusion']))
            sys.stdout.flush()
            Us = Us + (discretization.solve(mu),)
            legend = legend + (str(mu['diffusion']),)
        discretization.visualize(Us, legend=legend, title='Detailed Solutions for different parameters', block=True)

    print('RB generation ...')

    product = discretization.h1_0_semi_product if args['--estimator-norm'] == 'h1' else None
    coercivity_estimator=ExpressionParameterFunctional('min([diffusion[0], diffusion[1]**2])', discretization.parameter_type)
    reductors = {'residual_basis': partial(reduce_coercive, product=product,
                                   coercivity_estimator=coercivity_estimator),
                 'traditional': partial(reduce_coercive_simple, product=product,
                                        coercivity_estimator=coercivity_estimator)}
    reductor = reductors[args['--reductor']]
    extension_algorithms = {'trivial': trivial_basis_extension,
                            'gram_schmidt': gram_schmidt_basis_extension,
                            'h1_gram_schmidt': partial(gram_schmidt_basis_extension, product=discretization.h1_0_semi_product)}
    extension_algorithm = extension_algorithms[args['--extension-alg']]

    pool = new_parallel_pool(ipython_num_engines=args['--ipython-engines'], ipython_profile=args['--ipython-profile'])
    greedy_data = adaptive_greedy(discretization, reductor,
                                  validation_mus=args['--validation-mus'], rho=args['--rho'], gamma=args['--gamma'],
                                  theta=args['--theta'],
                                  use_estimator=not args['--without-estimator'], error_norm=discretization.h1_0_semi_norm,
                                  extension_algorithm=extension_algorithm, max_extensions=args['RBSIZE'],
                                  visualize=args['--visualize-refinement'])

    rb_discretization, reconstructor = greedy_data['reduced_discretization'], greedy_data['reconstructor']

    if args['--pickle']:
        print('\nWriting reduced discretization to file {} ...'.format(args['--pickle'] + '_reduced'))
        with open(args['--pickle'] + '_reduced', 'wb') as f:
            dump(rb_discretization, f)
        print('Writing detailed discretization and reconstructor to file {} ...'.format(args['--pickle'] + '_detailed'))
        with open(args['--pickle'] + '_detailed', 'wb') as f:
            dump((discretization, reconstructor), f)

    print('\nSearching for maximum error on random snapshots ...')

    results = reduction_error_analysis(rb_discretization,
                                       discretization=discretization,
                                       reconstructor=reconstructor,
                                       estimator=True,
                                       error_norms=(discretization.h1_0_semi_norm,),
                                       condition=True,
                                       test_mus=args['--test'],
                                       basis_sizes=25 if args['--plot-error-sequence'] else 1,
                                       plot=True,
                                       pool=pool)

    real_rb_size = rb_discretization.solution_space.dim

    print('''
*** RESULTS ***

Problem:
   number of blocks:                   2x2
   h:                                  sqrt(2)/{args[--grid]}

Greedy basis generation:
   estimator disabled:                 {args[--without-estimator]}
   estimator norm:                     {args[--estimator-norm]}
   extension method:                   {args[--extension-alg]}
   prescribed basis size:              {args[RBSIZE]}
   actual basis size:                  {real_rb_size}
   elapsed time:                       {greedy_data[time]}
'''.format(**locals()))
    print(results['summary'])

    sys.stdout.flush()

    if args['--plot-error-sequence']:
        from matplotlib import pyplot as plt
        plt.show(results['figure'])
    if args['--plot-err']:
        mumax = results['max_error_mus'][0, -1]
        U = discretization.solve(mumax)
        URB = reconstructor.reconstruct(rb_discretization.solve(mumax))
        discretization.visualize((U, URB, U - URB), legend=('Detailed Solution', 'Reduced Solution', 'Error'),
                                 title='Maximum Error Solution', separate_colorbars=True, block=True)
Beispiel #12
0
def main(
    rbsize: int = Argument(..., help='Size of the reduced basis.'),

    cache_region: Choices('none memory disk persistent') = Option(
        'none',
        help='Name of cache region to use for caching solution snapshots.'
    ),
    error_estimator: bool = Option(True, help='Use error estimator for basis generation.'),
    gamma: float = Option(0.2, help='Weight factor for age penalty term in refinement indicators.'),
    grid: int = Option(100, help='Use grid with 2*NI*NI elements.'),
    ipython_engines: int = Option(
        0,
        help='If positive, the number of IPython cluster engines to use for parallel greedy search. '
             'If zero, no parallelization is performed.'
    ),
    ipython_profile: str = Option(None, help='IPython profile to use for parallelization.'),
    list_vector_array: bool = Option(
        False,
        help='Solve using ListVectorArray[NumpyVector] instead of NumpyVectorArray.'
    ),
    pickle: str = Option(
        None,
        help='Pickle reduced discretization, as well as reductor and high-dimensional model to files with this prefix.'
    ),
    plot_err: bool = Option(False, help='Plot error.'),
    plot_solutions: bool = Option(False, help='Plot some example solutions.'),
    plot_error_sequence: bool = Option(False, help='Plot reduction error vs. basis size.'),
    product: Choices('euclidean h1') = Option(
        'h1',
        help='Product  w.r.t. which to orthonormalize and calculate Riesz representatives.'
    ),
    reductor: Choices('traditional residual_basis') = Option(
        'residual_basis',
        help='Reductor (error estimator) to choose (traditional, residual_basis).'
    ),
    rho: float = Option(1.1, help='Maximum allowed ratio between error on validation set and on training set.'),
    test: int = Option(10, help='Use COUNT snapshots for stochastic error estimation.'),
    theta: float = Option(0., help='Ratio of elements to refine.'),
    validation_mus: int = Option(0, help='Size of validation set.'),
    visualize_refinement: bool = Option(True, help='Visualize the training set refinement indicators.'),
):
    """Modified thermalblock demo using adaptive greedy basis generation algorithm."""

    problem = thermal_block_problem(num_blocks=(2, 2))
    functionals = [ExpressionParameterFunctional('diffusion[0]', {'diffusion': 2}),
                   ExpressionParameterFunctional('diffusion[1]**2', {'diffusion': 2}),
                   ExpressionParameterFunctional('diffusion[0]', {'diffusion': 2}),
                   ExpressionParameterFunctional('diffusion[1]', {'diffusion': 2})]
    problem = problem.with_(
        diffusion=problem.diffusion.with_(coefficients=functionals),
    )

    print('Discretize ...')
    fom, _ = discretize_stationary_cg(problem, diameter=1. / grid)

    if list_vector_array:
        from pymor.discretizers.builtin.list import convert_to_numpy_list_vector_array
        fom = convert_to_numpy_list_vector_array(fom)

    if cache_region != 'none':
        # building a cache_id is only needed for persistent CacheRegions
        cache_id = f"pymordemos.thermalblock_adaptive {grid}"
        fom.enable_caching(cache_region.value, cache_id)

    if plot_solutions:
        print('Showing some solutions')
        Us = ()
        legend = ()
        for mu in problem.parameter_space.sample_randomly(2):
            print(f"Solving for diffusion = \n{mu['diffusion']} ... ")
            sys.stdout.flush()
            Us = Us + (fom.solve(mu),)
            legend = legend + (str(mu['diffusion']),)
        fom.visualize(Us, legend=legend, title='Detailed Solutions for different parameters', block=True)

    print('RB generation ...')

    product_op = fom.h1_0_semi_product if product == 'h1' else None
    coercivity_estimator = ExpressionParameterFunctional('min([diffusion[0], diffusion[1]**2])',
                                                         fom.parameters)
    reductors = {'residual_basis': CoerciveRBReductor(fom, product=product_op,
                                                      coercivity_estimator=coercivity_estimator),
                 'traditional': SimpleCoerciveRBReductor(fom, product=product_op,
                                                         coercivity_estimator=coercivity_estimator)}
    reductor = reductors[reductor]

    pool = new_parallel_pool(ipython_num_engines=ipython_engines, ipython_profile=ipython_profile)
    greedy_data = rb_adaptive_greedy(
        fom, reductor, problem.parameter_space,
        validation_mus=validation_mus,
        rho=rho,
        gamma=gamma,
        theta=theta,
        use_error_estimator=error_estimator,
        error_norm=fom.h1_0_semi_norm,
        max_extensions=rbsize,
        visualize=visualize_refinement
    )

    rom = greedy_data['rom']

    if pickle:
        print(f"\nWriting reduced model to file {pickle}_reduced ...")
        with open(pickle + '_reduced', 'wb') as f:
            dump(rom, f)
        print(f"Writing detailed model and reductor to file {pickle}_detailed ...")
        with open(pickle + '_detailed', 'wb') as f:
            dump((fom, reductor), f)

    print('\nSearching for maximum error on random snapshots ...')

    results = reduction_error_analysis(rom,
                                       fom=fom,
                                       reductor=reductor,
                                       error_estimator=True,
                                       error_norms=(fom.h1_0_semi_norm,),
                                       condition=True,
                                       test_mus=problem.parameter_space.sample_randomly(test),
                                       basis_sizes=25 if plot_error_sequence else 1,
                                       plot=True,
                                       pool=pool)

    real_rb_size = rom.solution_space.dim

    print('''
*** RESULTS ***

Problem:
   number of blocks:                   2x2
   h:                                  sqrt(2)/{grid}

Greedy basis generation:
   error estimator enalbed:            {error_estimator}
   product:                            {product}
   prescribed basis size:              {rbsize}
   actual basis size:                  {real_rb_size}
   elapsed time:                       {greedy_data[time]}
'''.format(**locals()))
    print(results['summary'])

    sys.stdout.flush()

    if plot_error_sequence:
        from matplotlib import pyplot as plt
        plt.show()
    if plot_err:
        mumax = results['max_error_mus'][0, -1]
        U = fom.solve(mumax)
        URB = reductor.reconstruct(rom.solve(mumax))
        fom.visualize((U, URB, U - URB), legend=('Detailed Solution', 'Reduced Solution', 'Error'),
                      title='Maximum Error Solution', separate_colorbars=True, block=True)