Beispiel #1
0
def solve_ricc_lrcf(
        A,
        E,
        B,
        C,
        R=None,
        S=None,
        trans=False,
        options=None,
        default_sparse_solver_backend=_DEFAULT_RICC_LRCF_SPARSE_SOLVER_BACKEND,
        default_dense_solver_backend=_DEFAULT_RICC_LRCF_DENSE_SOLVER_BACKEND):
    """Compute an approximate low-rank solution of a Riccati equation.

    Returns a low-rank Cholesky factor :math:`Z` such that :math:`Z Z^T`
    approximates the solution :math:`X` of a (generalized)
    continuous-time algebraic Riccati equation:

    - if trans is `False`

      .. math::
          A X E^T + E X A^T
          - (E X C^T + S) R^{-1} (E X C^T + S)^T
          + B B^T = 0.

    - if trans is `True`

      .. math::
          A^T X E + E^T X A
          - (E^T X B + S) R^{-1} (E^T X B + S)^T
          + C^T C = 0.

    If E is None, it is taken to be identity, and similarly for R.
    If S is None, it is taken to be zero.

    We assume:

    - A and E are real |Operators|,
    - B, C and S are real |VectorArrays| from `A.source`,
    - R is a real |NumPy array|,
    - (E, A, B, C) is stabilizable and detectable,
    - R is symmetric positive definite, and
    - :math:`B B^T - S R^{-1} S^T` (:math:`C^T C - S R^{-1} S^T`) is
      positive semi-definite trans is `False` (`True`).

    For large-scale problems, we additionally assume that `len(B)` and
    `len(C)` are small.

    If the solver is not specified using the options argument, a solver
    backend is chosen based on availability in the following order:

    - for sparse problems (minimum size specified by
      :func:`~pymor.algorithms.lyapunov.mat_eqn_sparse_min_size`)

      1. `pymess` (see :func:`pymor.bindings.pymess.solve_ricc_lrcf`),

    - for dense problems (smaller than
      :func:`~pymor.algorithms.lyapunov.mat_eqn_sparse_min_size`)

      1. `pymess` (see :func:`pymor.bindings.pymess.solve_ricc_lrcf`),
      2. `slycot` (see :func:`pymor.bindings.slycot.solve_ricc_lrcf`),
      3. `scipy` (see :func:`pymor.bindings.scipy.solve_ricc_lrcf`).

    Parameters
    ----------
    A
        The |Operator| A.
    E
        The |Operator| E or `None`.
    B
        The operator B as a |VectorArray| from `A.source`.
    C
        The operator C as a |VectorArray| from `A.source`.
    R
        The operator R as a 2D |NumPy array| or `None`.
    S
        The operator S as a |VectorArray| from `A.source` or `None`.
    trans
        Whether the first |Operator| in the Riccati equation is
        transposed.
    options
        The solver options to use.
        See:

        - :func:`pymor.bindings.scipy.ricc_lrcf_solver_options`,
        - :func:`pymor.bindings.slycot.ricc_lrcf_solver_options`,
        - :func:`pymor.bindings.pymess.ricc_lrcf_solver_options`.

    default_sparse_solver_backend
        Default sparse solver backend to use (pymess).
    default_dense_solver_backend
        Default dense solver backend to use (pymess, slycot, scipy).

    Returns
    -------
    Z
        Low-rank Cholesky factor of the Riccati equation solution,
        |VectorArray| from `A.source`.
    """

    _solve_ricc_check_args(A, E, B, C, R, S, trans)
    if options:
        solver = options if isinstance(options, str) else options['type']
        backend = solver.split('_')[0]
    else:
        if A.source.dim >= mat_eqn_sparse_min_size():
            backend = default_sparse_solver_backend
        else:
            backend = default_dense_solver_backend
    if backend == 'scipy':
        from pymor.bindings.scipy import solve_ricc_lrcf as solve_ricc_impl
    elif backend == 'slycot':
        from pymor.bindings.slycot import solve_ricc_lrcf as solve_ricc_impl
    elif backend == 'pymess':
        from pymor.bindings.pymess import solve_ricc_lrcf as solve_ricc_impl
    else:
        raise ValueError(f'Unknown solver backend ({backend}).')
    return solve_ricc_impl(A, E, B, C, R, S, trans=trans, options=options)
Beispiel #2
0
def solve_pos_ricc_lrcf(
        A,
        E,
        B,
        C,
        R=None,
        S=None,
        trans=False,
        options=None,
        default_dense_solver_backend=_DEFAULT_RICC_LRCF_DENSE_SOLVER_BACKEND):
    """Compute an approximate low-rank solution of a positive Riccati equation.

    Returns a low-rank Cholesky factor :math:`Z` such that :math:`Z Z^T`
    approximates the solution :math:`X` of a (generalized) positive
    continuous-time algebraic Riccati equation:

    - if trans is `False`

      .. math::
          A X E^T + E X A^T
          + (E X C^T + S) R^{-1} (E X C^T + S)^T
          + B B^T = 0.

    - if trans is `True`

      .. math::
          A^T X E + E^T X A
          + (E^T X B + S) R^{-1} (E^T X B + S)^T
          + C^T C = 0.

    If E is None, it is taken to be identity, and similarly for R.
    If S is None, it is taken to be zero.

    If the solver is not specified using the options argument, a solver
    backend is chosen based on availability in the following order:

    1. `pymess` (see :func:`pymor.bindings.pymess.solve_pos_ricc_lrcf`),
    2. `slycot` (see :func:`pymor.bindings.slycot.solve_pos_ricc_lrcf`),
    3. `scipy` (see :func:`pymor.bindings.scipy.solve_pos_ricc_lrcf`).

    Parameters
    ----------
    A
        The |Operator| A.
    E
        The |Operator| E or `None`.
    B
        The operator B as a |VectorArray| from `A.source`.
    C
        The operator C as a |VectorArray| from `A.source`.
    R
        The operator R as a 2D |NumPy array| or `None`.
    S
        The operator S as a |VectorArray| from `A.source` or `None`.
    trans
        Whether the first |Operator| in the positive Riccati equation is
        transposed.
    options
        The solver options to use.
        See:

        - :func:`pymor.bindings.scipy.pos_ricc_lrcf_solver_options`,
        - :func:`pymor.bindings.slycot.pos_ricc_lrcf_solver_options`,
        - :func:`pymor.bindings.pymess.pos_ricc_lrcf_solver_options`.

    default_dense_solver_backend
        Default dense solver backend to use (pymess, slycot, scipy).

    Returns
    -------
    Z
        Low-rank Cholesky factor of the positive Riccati equation
        solution, |VectorArray| from `A.source`.
    """

    _solve_ricc_check_args(A, E, B, C, R, S, trans)
    if options:
        solver = options if isinstance(options, str) else options['type']
        backend = solver.split('_')[0]
    else:
        backend = default_dense_solver_backend
    if backend == 'scipy':
        from pymor.bindings.scipy import solve_pos_ricc_lrcf as solve_ricc_impl
    elif backend == 'slycot':
        from pymor.bindings.slycot import solve_pos_ricc_lrcf as solve_ricc_impl
    elif backend == 'pymess':
        from pymor.bindings.pymess import solve_pos_ricc_lrcf as solve_ricc_impl
    else:
        raise ValueError(f'Unknown solver backend ({backend}).')
    return solve_ricc_impl(A, E, B, C, R, S, trans=trans, options=options)