Beispiel #1
0
def visualize_matplotlib_1d(grid, U, codim=1, title=None, legend=None, separate_plots=False, block=False):
    """Visualize scalar data associated to a one-dimensional |Grid| as a plot.

    The grid's |ReferenceElement| must be the line. The data can either
    be attached to the subintervals or vertices of the grid.

    Parameters
    ----------
    grid
        The underlying |Grid|.
    U
        |VectorArray| of the data to visualize. If `len(U) > 1`, the data is visualized
        as a time series of plots. Alternatively, a tuple of |VectorArrays| can be
        provided, in which case several plots are made into the same axes. The
        lengths of all arrays have to agree.
    codim
        The codimension of the entities the data in `U` is attached to (either 0 or 1).
    title
        Title of the plot.
    legend
        Description of the data that is plotted. Most useful if `U` is a tuple in which
        case `legend` has to be a tuple of strings of the same length.
    separate_plots
        If `True`, use subplots to visualize multiple |VectorArrays|.
    block
        If `True`, block execution until the plot window is closed.
    """
    if not config.HAVE_QT:
        raise QtMissing()
    if not config.HAVE_MATPLOTLIB:
        raise ImportError('cannot visualize: import of matplotlib failed')

    class MainWindow(PlotMainWindow):
        def __init__(self, grid, U, codim, title, legend, separate_plots):
            assert isinstance(U, VectorArrayInterface) \
                or (isinstance(U, tuple)
                    and all(isinstance(u, VectorArrayInterface) for u in U)
                    and all(len(u) == len(U[0]) for u in U))
            U = (U.to_numpy(),) if isinstance(U, VectorArrayInterface) else tuple(u.to_numpy() for u in U)
            if isinstance(legend, str):
                legend = (legend,)
            assert legend is None or isinstance(legend, tuple) and len(legend) == len(U)

            plot_widget = Matplotlib1DWidget(None, grid, count=len(U), vmin=[np.min(u) for u in U],
                                             vmax=[np.max(u) for u in U], legend=legend, codim=codim,
                                             separate_plots=separate_plots)
            super().__init__(U, plot_widget, title=title, length=len(U[0]))
            self.grid = grid

    _launch_qt_app(lambda: MainWindow(grid, U, codim, title=title, legend=legend, separate_plots=separate_plots), block)
Beispiel #2
0
import sys
from pymor.tools.docopt import docopt
import time
import numpy as np
import OpenGL

from pymor.core.config import is_windows_platform
from pymor.gui.matplotlib import MatplotlibPatchWidget

OpenGL.ERROR_ON_COPY = True

from pymor.core.exceptions import QtMissing
try:
    from Qt import QtWidgets
except ImportError as e:
    raise QtMissing()
from pymor.algorithms.greedy import greedy
from pymor.analyticalproblems.thermalblock import thermal_block_problem
from pymor.discretizers.cg import discretize_stationary_cg
from pymor.gui.gl import ColorBarWidget, GLPatchWidget
from pymor.reductors.coercive import CoerciveRBReductor

PARAM_STEPS = 10
PARAM_MIN = 0.1
PARAM_MAX = 1


class ParamRuler(QtWidgets.QWidget):
    def __init__(self, parent, sim):
        super().__init__(parent)
        self.sim = sim
Beispiel #3
0
def visualize_patch(grid,
                    U,
                    bounding_box=([0, 0], [1, 1]),
                    codim=2,
                    title=None,
                    legend=None,
                    separate_colorbars=False,
                    rescale_colorbars=False,
                    backend='gl',
                    block=False,
                    columns=2):
    """Visualize scalar data associated to a two-dimensional |Grid| as a patch plot.

    The grid's |ReferenceElement| must be the triangle or square. The data can either
    be attached to the faces or vertices of the grid.

    Parameters
    ----------
    grid
        The underlying |Grid|.
    U
        |VectorArray| of the data to visualize. If `len(U) > 1`, the data is visualized
        as a time series of plots. Alternatively, a tuple of |VectorArrays| can be
        provided, in which case a subplot is created for each entry of the tuple. The
        lengths of all arrays have to agree.
    bounding_box
        A bounding box in which the grid is contained.
    codim
        The codimension of the entities the data in `U` is attached to (either 0 or 2).
    title
        Title of the plot.
    legend
        Description of the data that is plotted. Most useful if `U` is a tuple in which
        case `legend` has to be a tuple of strings of the same length.
    separate_colorbars
        If `True`, use separate colorbars for each subplot.
    rescale_colorbars
        If `True`, rescale colorbars to data in each frame.
    backend
        Plot backend to use ('gl' or 'matplotlib').
    block
        If `True`, block execution until the plot window is closed.
    columns
        The number of columns in the visualizer GUI in case multiple plots are displayed
        at the same time.
    """
    if not config.HAVE_QT:
        raise QtMissing()

    assert backend in {'gl', 'matplotlib'}

    if backend == 'gl':
        if not config.HAVE_GL:
            logger = getLogger('pymor.gui.qt.visualize_patch')
            logger.warning(
                'import of PyOpenGL failed, falling back to matplotlib; rendering will be slow'
            )
            backend = 'matplotlib'
        elif not config.HAVE_QTOPENGL:
            logger = getLogger('pymor.gui.qt.visualize_patch')
            logger.warning(
                'import of Qt.QtOpenGL failed, falling back to matplotlib; rendering will be slow'
            )
            backend = 'matplotlib'
        if backend == 'matplotlib' and not config.HAVE_MATPLOTLIB:
            raise ImportError('cannot visualize: import of matplotlib failed')
    else:
        if not config.HAVE_MATPLOTLIB:
            raise ImportError('cannot visualize: import of matplotlib failed')

    # TODO extract class
    class MainWindow(PlotMainWindow):
        def __init__(self, grid, U, bounding_box, codim, title, legend,
                     separate_colorbars, rescale_colorbars, backend):

            assert isinstance(U, VectorArrayInterface) and hasattr(U, 'data') \
                or (isinstance(U, tuple) and all(isinstance(u, VectorArrayInterface) and hasattr(u, 'data') for u in U)
                    and all(len(u) == len(U[0]) for u in U))
            U = (U.data.astype(np.float64, copy=False),) if hasattr(U, 'data') else \
                tuple(u.data.astype(np.float64, copy=False) for u in U)
            if isinstance(legend, str):
                legend = (legend, )
            assert legend is None or isinstance(
                legend, tuple) and len(legend) == len(U)
            if backend == 'gl':
                widget = GLPatchWidget
                cbar_widget = ColorBarWidget
            else:
                widget = MatplotlibPatchWidget
                cbar_widget = None
                if not separate_colorbars and len(U) > 1:
                    l = getLogger('pymor.gui.qt.visualize_patch')
                    l.warn(
                        'separate_colorbars=False not supported for matplotlib backend'
                    )
                separate_colorbars = True

            class PlotWidget(QWidget):
                def __init__(self):
                    super().__init__()
                    if separate_colorbars:
                        if rescale_colorbars:
                            self.vmins = tuple(np.min(u[0]) for u in U)
                            self.vmaxs = tuple(np.max(u[0]) for u in U)
                        else:
                            self.vmins = tuple(np.min(u) for u in U)
                            self.vmaxs = tuple(np.max(u) for u in U)
                    else:
                        if rescale_colorbars:
                            self.vmins = (min(np.min(u[0])
                                              for u in U), ) * len(U)
                            self.vmaxs = (max(np.max(u[0])
                                              for u in U), ) * len(U)
                        else:
                            self.vmins = (min(np.min(u) for u in U), ) * len(U)
                            self.vmaxs = (max(np.max(u) for u in U), ) * len(U)

                    layout = QHBoxLayout()
                    plot_layout = QGridLayout()
                    self.colorbarwidgets = [
                        cbar_widget(self, vmin=vmin, vmax=vmax)
                        if cbar_widget else None
                        for vmin, vmax in zip(self.vmins, self.vmaxs)
                    ]
                    plots = [
                        widget(self,
                               grid,
                               vmin=vmin,
                               vmax=vmax,
                               bounding_box=bounding_box,
                               codim=codim)
                        for vmin, vmax in zip(self.vmins, self.vmaxs)
                    ]
                    if legend:
                        for i, plot, colorbar, l in zip(
                                range(len(plots)), plots, self.colorbarwidgets,
                                legend):
                            subplot_layout = QVBoxLayout()
                            caption = QLabel(l)
                            caption.setAlignment(Qt.AlignHCenter)
                            subplot_layout.addWidget(caption)
                            if not separate_colorbars or backend == 'matplotlib':
                                subplot_layout.addWidget(plot)
                            else:
                                hlayout = QHBoxLayout()
                                hlayout.addWidget(plot)
                                if colorbar:
                                    hlayout.addWidget(colorbar)
                                subplot_layout.addLayout(hlayout)
                            plot_layout.addLayout(subplot_layout,
                                                  int(i / columns),
                                                  (i % columns), 1, 1)
                    else:
                        for i, plot, colorbar in zip(range(len(plots)), plots,
                                                     self.colorbarwidgets):
                            if not separate_colorbars or backend == 'matplotlib':
                                plot_layout.addWidget(plot, int(i / columns),
                                                      (i % columns), 1, 1)
                            else:
                                hlayout = QHBoxLayout()
                                hlayout.addWidget(plot)
                                if colorbar:
                                    hlayout.addWidget(colorbar)
                                plot_layout.addLayout(hlayout,
                                                      int(i / columns),
                                                      (i % columns), 1, 1)
                    layout.addLayout(plot_layout)
                    if not separate_colorbars:
                        layout.addWidget(self.colorbarwidgets[0])
                        for w in self.colorbarwidgets[1:]:
                            w.setVisible(False)
                    self.setLayout(layout)
                    self.plots = plots

                def set(self, U, ind):
                    if rescale_colorbars:
                        if separate_colorbars:
                            self.vmins = tuple(np.min(u[ind]) for u in U)
                            self.vmaxs = tuple(np.max(u[ind]) for u in U)
                        else:
                            self.vmins = (min(np.min(u[ind])
                                              for u in U), ) * len(U)
                            self.vmaxs = (max(np.max(u[ind])
                                              for u in U), ) * len(U)

                    for u, plot, colorbar, vmin, vmax in zip(
                            U, self.plots, self.colorbarwidgets, self.vmins,
                            self.vmaxs):
                        plot.set(u[ind], vmin=vmin, vmax=vmax)
                        if colorbar:
                            colorbar.set(vmin=vmin, vmax=vmax)

            super().__init__(U, PlotWidget(), title=title, length=len(U[0]))
            self.grid = grid
            self.codim = codim

        def save(self):
            if not config.HAVE_PYVTK:
                msg = QMessageBox(QMessageBox.Critical, 'Error',
                                  'VTK output disabled. Pleas install pyvtk.')
                msg.exec_()
                return
            filename = QFileDialog.getSaveFileName(self, 'Save as vtk file')[0]
            base_name = filename.split('.vtu')[0].split('.vtk')[0].split(
                '.pvd')[0]
            if base_name:
                if len(self.U) == 1:
                    write_vtk(self.grid,
                              NumpyVectorSpace.make_array(self.U[0]),
                              base_name,
                              codim=self.codim)
                else:
                    for i, u in enumerate(self.U):
                        write_vtk(self.grid,
                                  NumpyVectorSpace.make_array(u),
                                  '{}-{}'.format(base_name, i),
                                  codim=self.codim)

    _launch_qt_app(
        lambda: MainWindow(grid,
                           U,
                           bounding_box,
                           codim,
                           title=title,
                           legend=legend,
                           separate_colorbars=separate_colorbars,
                           rescale_colorbars=rescale_colorbars,
                           backend=backend), block)