Beispiel #1
0
def _approx_derivative(easing_name, t, easing_args, offsets):
    delta = 1e-10
    t0 = max(0, t - delta)
    t1 = min(1, t + delta)
    y0 = ngl.easing_evaluate(easing_name, t0, easing_args, offsets)
    y1 = ngl.easing_evaluate(easing_name, t1, easing_args, offsets)
    return (y1 - y0) / (t1 - t0)
Beispiel #2
0
def anim_forward_api(nb_points=7):
    scale = 1.0 / float(nb_points)
    ret = []
    times = [i * scale for i in range(nb_points + 1)]
    for easing in _easing_list:
        easing_name, easing_args = _easing_split(easing)
        for offsets in _offsets:
            values = [ngl.easing_evaluate(easing_name, t, easing_args, offsets) for t in times]
            ret.append((easing_name, values))
    return ret
Beispiel #3
0
def _get_easing_node(cfg, easing, curve_zoom, color_program, nb_points=128):
    text_vratio = 1 / 8.
    graph_hpad_ratio = 1 / 16.

    area_size = 2.0
    width, height = area_size, area_size
    text_height = text_vratio * height
    pad_height = graph_hpad_ratio * height

    # Colors
    hue = random.uniform(0, 0.6)
    color = list(colorsys.hls_to_rgb(hue, 0.6, 1.0)) + [1]
    ucolor = ngl.UniformVec4(value=color)
    graph_bg_ucolor = ngl.UniformVec4(value=(.15, .15, .15, 1))
    normed_graph_bg_ucolor = ngl.UniformVec4(value=(0, 0, 0, 1))
    line_ucolor = ngl.UniformVec4(value=(1, 1, 1, .4))

    # Text legend
    text = ngl.Text(text=easing,
                    fg_color=color,
                    padding=3,
                    bg_color=(0, 0, 0, 1),
                    box_corner=(-width / 2., height / 2. - text_height, 0),
                    box_width=(width, 0, 0),
                    box_height=(0, text_height, 0),
                    label='%s legend' % easing)

    # Graph drawing area (where the curve may overflow)
    graph_size = area_size - text_height - pad_height * 2
    graph_block = _block(graph_size,
                         graph_size,
                         color_program,
                         corner=(-graph_size / 2,
                                 -(graph_size + text_height) / 2, 0),
                         color=graph_bg_ucolor)

    # Normed area of the graph
    normed_graph_size = graph_size * curve_zoom
    normed_graph_block = _block(normed_graph_size,
                                normed_graph_size,
                                color_program,
                                corner=(-normed_graph_size / 2,
                                        -(normed_graph_size + text_height) / 2,
                                        0),
                                color=normed_graph_bg_ucolor)

    # Curve
    easing_name, easing_args = _easing_split(easing)
    curve_scale_factor = graph_size / area_size * curve_zoom
    vertices_data = array.array('f')
    for i in range(nb_points + 1):
        t = i / float(nb_points)
        v = ngl.easing_evaluate(easing_name, t, easing_args)
        x = curve_scale_factor * (t * width - width / 2.)
        y = curve_scale_factor * (v * height - height / 2.)
        y -= text_height / 2.
        vertices_data.extend([x, y, 0])
    vertices = ngl.BufferVec3(data=vertices_data)
    geometry = ngl.Geometry(vertices, topology='line_strip')
    curve = ngl.Render(geometry, color_program, label='%s curve' % easing)
    curve.update_uniforms(color=ucolor)

    # Value cursor
    y = 2 / 3. * pad_height
    x = y * math.sqrt(3)
    cursor_geometry = ngl.Triangle((-x, y, 0), (0, 0, 0), (-x, -y, 0))
    cursor = ngl.Render(cursor_geometry,
                        color_program,
                        label='%s cursor' % easing)
    cursor.update_uniforms(color=ucolor)

    # Horizontal value line
    hline_data = array.array('f', (0, 0, 0, graph_size, 0, 0))
    hline_vertices = ngl.BufferVec3(data=hline_data)
    hline_geometry = ngl.Geometry(hline_vertices, topology='line_strip')
    hline = ngl.Render(hline_geometry,
                       color_program,
                       label='%s value line' % easing)
    hline.update_uniforms(color=line_ucolor)

    # Value animation (cursor + h-line)
    value_x = -graph_size / 2.
    value_y = (-text_height - normed_graph_size) / 2.
    value_animkf = (
        ngl.AnimKeyFrameVec3(0, (value_x, value_y, 0)),
        ngl.AnimKeyFrameVec3(cfg.duration,
                             (value_x, value_y + normed_graph_size, 0),
                             easing_name, easing_args),
    )
    value_anim = ngl.Group(children=(hline, cursor))
    value_anim = ngl.Translate(value_anim,
                               anim=ngl.AnimatedVec3(value_animkf),
                               label='%s value anim' % easing)

    # Vertical time line
    vline_data = array.array('f', (0, 0, 0, 0, graph_size, 0))
    vline_vertices = ngl.BufferVec3(data=vline_data)
    vline_geometry = ngl.Geometry(vline_vertices, topology='line_strip')
    vline = ngl.Render(vline_geometry,
                       color_program,
                       label='%s time line' % easing)
    vline.update_uniforms(color=line_ucolor)

    # Time animation (v-line only)
    time_x = -normed_graph_size / 2.
    time_y = (-text_height - graph_size) / 2.
    time_animkf = (ngl.AnimKeyFrameVec3(0, (time_x, time_y, 0)),
                   ngl.AnimKeyFrameVec3(
                       cfg.duration, (time_x + normed_graph_size, time_y, 0)))
    time_anim = ngl.Translate(vline,
                              anim=ngl.AnimatedVec3(time_animkf),
                              label='%s time anim' % easing)

    group = ngl.Group(label='%s block' % easing)
    group.add_children(text, graph_block, normed_graph_block, curve,
                       value_anim, time_anim)
    return group