Beispiel #1
0
    def test_scale_images(self):

        module = ScaleImagesModule(scaling=(2., 2., None),
                                   name_in='scale1',
                                   image_in_tag='read',
                                   image_out_tag='scale1')

        self.pipeline.add_module(module)
        self.pipeline.run_module('scale1')

        module = ScaleImagesModule(scaling=(None, None, 2.),
                                   name_in='scale2',
                                   image_in_tag='read',
                                   image_out_tag='scale2')

        self.pipeline.add_module(module)
        self.pipeline.run_module('scale2')

        data = self.pipeline.get_data('scale1')
        assert np.allclose(data[0, 100, 100], 0.02356955774929094, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 2.507373695434516e-05, rtol=limit, atol=0.)
        assert data.shape == (40, 200, 200)

        data = self.pipeline.get_data('scale2')
        assert np.allclose(data[0, 50, 50], 0.19596827004387415, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 0.00020058989563476127, rtol=limit, atol=0.)
        assert data.shape == (40, 100, 100)
Beispiel #2
0
    def test_scale_images(self) -> None:

        module = ScaleImagesModule(scaling=(2., 2., None),
                                   name_in='scale1',
                                   image_in_tag='read',
                                   image_out_tag='scale1')

        self.pipeline.add_module(module)
        self.pipeline.run_module('scale1')

        module = ScaleImagesModule(scaling=(None, None, 2.),
                                   name_in='scale2',
                                   image_in_tag='read',
                                   image_out_tag='scale2')

        self.pipeline.add_module(module)
        self.pipeline.run_module('scale2')

        data = self.pipeline.get_data('scale1')
        assert np.sum(data) == pytest.approx(105.54278879805277, rel=self.limit, abs=0.)
        assert data.shape == (10, 22, 22)

        data = self.pipeline.get_data('scale2')
        assert np.sum(data) == pytest.approx(211.08557759610554, rel=self.limit, abs=0.)
        assert data.shape == (10, 11, 11)
Beispiel #3
0
    def test_scale_images(self) -> None:

        module = ScaleImagesModule(name_in='scale1',
                                   image_in_tag='read',
                                   image_out_tag='scale1',
                                   scaling=(2., 2., None),
                                   pixscale=True)

        self.pipeline.add_module(module)
        self.pipeline.run_module('scale1')

        module = ScaleImagesModule(name_in='scale2',
                                   image_in_tag='read',
                                   image_out_tag='scale2',
                                   scaling=(None, None, 2.),
                                   pixscale=True)

        self.pipeline.add_module(module)
        self.pipeline.run_module('scale2')

        data = self.pipeline.get_data('scale1')
        assert np.sum(data) == pytest.approx(105.54278879805277,
                                             rel=self.limit,
                                             abs=0.)
        assert data.shape == (10, 22, 22)

        data = self.pipeline.get_data('scale2')
        assert np.sum(data) == pytest.approx(211.08557759610554,
                                             rel=self.limit,
                                             abs=0.)
        assert data.shape == (10, 11, 11)

        attr = self.pipeline.get_attribute('read', 'PIXSCALE', static=True)
        assert attr == pytest.approx(0.027, rel=self.limit, abs=0.)

        attr = self.pipeline.get_attribute('scale1', 'PIXSCALE', static=True)
        assert attr == pytest.approx(0.0135, rel=self.limit, abs=0.)

        attr = self.pipeline.get_attribute('scale2', 'PIXSCALE', static=True)
        assert attr == pytest.approx(0.027, rel=self.limit, abs=0.)
Beispiel #4
0
    def test_apply_function_to_images_2d_args(self):
        self.pipeline.set_attribute("image_2d", "PIXSCALE", 0.1, static=True)

        scale = ScaleImagesModule(scaling=(1.2, 1.2, 10.),
                                  pixscale=True,
                                  name_in="scale2",
                                  image_in_tag="image_2d",
                                  image_out_tag="scale_2d")

        self.pipeline.add_module(scale)
        self.pipeline.run_module("scale2")

        data = self.pipeline.get_data("scale_2d")
        assert np.allclose(np.mean(data),
                           8.937141109641279e-05,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (12, 12)

        attribute = self.pipeline.get_attribute("scale_2d",
                                                "PIXSCALE",
                                                static=True)
        assert np.allclose(attribute, 0.08333333333333334, rtol=limit, atol=0.)
Beispiel #5
0
    def test_apply_function_to_images_3d_args(self):
        self.pipeline.set_attribute("config", "MEMORY", 1, static=True)
        self.pipeline.set_attribute("image_3d", "PIXSCALE", 0.1, static=True)

        scale = ScaleImagesModule(scaling=(1.2, 1.2, 10.),
                                  pixscale=True,
                                  name_in="scale1",
                                  image_in_tag="image_3d",
                                  image_out_tag="scale_3d")

        self.pipeline.add_module(scale)
        self.pipeline.run_module("scale1")

        data = self.pipeline.get_data("scale_3d")
        assert np.allclose(np.mean(data),
                           7.042953308754017e-05,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (4, 12, 12)

        attribute = self.pipeline.get_attribute("scale_3d",
                                                "PIXSCALE",
                                                static=True)
        assert np.allclose(attribute, 0.08333333333333334, rtol=limit, atol=0.)
Beispiel #6
0
    def test_mcmc_sampling_gaussian(self):

        self.pipeline.set_attribute('adi',
                                    'PARANG',
                                    np.arange(0., 200., 10.),
                                    static=False)

        module = ScaleImagesModule(scaling=(None, None, 100.),
                                   pixscale=False,
                                   name_in='scale1',
                                   image_in_tag='adi',
                                   image_out_tag='adi_scale')

        self.pipeline.add_module(module)
        self.pipeline.run_module('scale1')

        data = self.pipeline.get_data('adi_scale')
        assert np.allclose(data[0, 7, 7],
                           9.82388817812263,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (20, 15, 15)

        module = ScaleImagesModule(scaling=(None, None, 100.),
                                   pixscale=False,
                                   name_in='scale2',
                                   image_in_tag='psf',
                                   image_out_tag='psf_scale')

        self.pipeline.add_module(module)
        self.pipeline.run_module('scale2')

        data = self.pipeline.get_data('psf_scale')
        assert np.allclose(data[0, 7, 7],
                           9.806026673451198,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (4, 15, 15)

        module = DerotateAndStackModule(name_in='take_psf_avg',
                                        image_in_tag='psf_scale',
                                        image_out_tag='psf_avg',
                                        derotate=False,
                                        stack='mean')

        self.pipeline.add_module(module)
        self.pipeline.run_module('take_psf_avg')

        data = self.pipeline.get_data('psf_avg')
        assert data.shape == (1, 15, 15)

        module = MCMCsamplingModule(param=(0.1485, 0., 0.),
                                    bounds=((0.1, 0.25), (-5., 5.), (-0.5,
                                                                     0.5)),
                                    name_in='mcmc',
                                    image_in_tag='adi_scale',
                                    psf_in_tag='psf_avg',
                                    chain_out_tag='mcmc',
                                    nwalkers=50,
                                    nsteps=150,
                                    psf_scaling=-1.,
                                    pca_number=1,
                                    aperture={
                                        'type': 'circular',
                                        'pos_x': 7.0,
                                        'pos_y': 12.5,
                                        'radius': 0.1
                                    },
                                    mask=None,
                                    extra_rot=0.,
                                    scale=2.,
                                    sigma=(1e-3, 1e-1, 1e-2),
                                    prior='flat',
                                    variance='gaussian')

        self.pipeline.add_module(module)

        with pytest.warns(FutureWarning) as warning:
            self.pipeline.run_module('mcmc')

        assert warning[0].message.args[0] == 'Using a non-tuple sequence for multidimensional ' \
                                             'indexing is deprecated; use `arr[tuple(seq)]` ' \
                                             'instead of `arr[seq]`. In the future this will be ' \
                                             'interpreted as an array index, ' \
                                             '`arr[np.array(seq)]`, which will result either ' \
                                             'in an error or a different result.'

        single = self.pipeline.get_data('mcmc')
        single = single[:, 20:, :].reshape((-1, 3))
        assert np.allclose(np.median(single[:, 0]), 0.148, rtol=0., atol=0.01)
        assert np.allclose(np.median(single[:, 1]), 0., rtol=0., atol=0.2)
        assert np.allclose(np.median(single[:, 2]), 0., rtol=0., atol=0.1)
Beispiel #7
0
    def test_mcmc_sampling_poisson(self):

        self.pipeline.set_attribute("adi",
                                    "PARANG",
                                    np.arange(0., 200., 10.),
                                    static=False)

        scale = ScaleImagesModule(scaling=(None, None, 100.),
                                  pixscale=False,
                                  name_in="scale1",
                                  image_in_tag="adi",
                                  image_out_tag="adi_scale")

        self.pipeline.add_module(scale)
        self.pipeline.run_module("scale1")

        data = self.pipeline.get_data("adi_scale")
        assert np.allclose(data[0, 7, 7],
                           9.82388817812263,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (20, 15, 15)

        scale = ScaleImagesModule(scaling=(None, None, 100.),
                                  pixscale=False,
                                  name_in="scale2",
                                  image_in_tag="psf",
                                  image_out_tag="psf_scale")

        self.pipeline.add_module(scale)
        self.pipeline.run_module("scale2")

        data = self.pipeline.get_data("psf_scale")
        assert np.allclose(data[0, 7, 7],
                           9.806026673451198,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (4, 15, 15)

        avg_psf = DerotateAndStackModule(name_in="take_psf_avg",
                                         image_in_tag="psf_scale",
                                         image_out_tag="psf_avg",
                                         derotate=False,
                                         stack="mean")

        self.pipeline.add_module(avg_psf)
        self.pipeline.run_module("take_psf_avg")

        data = self.pipeline.get_data("psf_avg")
        assert data.shape == (15, 15)

        mcmc = MCMCsamplingModule(param=(0.1485, 0., 0.),
                                  bounds=((0.1, 0.25), (-5., 5.), (-0.5, 0.5)),
                                  name_in="mcmc",
                                  image_in_tag="adi_scale",
                                  psf_in_tag="psf_avg",
                                  chain_out_tag="mcmc",
                                  nwalkers=50,
                                  nsteps=150,
                                  psf_scaling=-1.,
                                  pca_number=1,
                                  aperture=0.1,
                                  mask=None,
                                  extra_rot=0.,
                                  scale=2.,
                                  sigma=(1e-3, 1e-1, 1e-2),
                                  prior="flat",
                                  variance="poisson")

        self.pipeline.add_module(mcmc)
        self.pipeline.run_module("mcmc")

        single = self.pipeline.get_data("mcmc")
        single = single[:, 20:, :].reshape((-1, 3))
        assert np.allclose(np.median(single[:, 0]), 0.148, rtol=0., atol=0.01)
        assert np.allclose(np.median(single[:, 1]), 0., rtol=0., atol=0.2)
        assert np.allclose(np.median(single[:, 2]), 0., rtol=0., atol=0.1)