def _R_alp(self, ch):
     cal1 = nw.sqrt(self.mats.A[ch][ch]) * self.r0
     cal2 = nw.sqrt( nw.pow(self._rho_alp(ch),2) -\
     self.mats.V[ch][ch]*nw.pow(self.r0,2.0) )
     if equiv_tests:
         if not gu.complex_compare(cal1, cal2):
             raise RadWellException("_R_alp: " + str(cal1) + "   " +
                                    str(cal2))
     return cal2
 def _e_n_Sq_alt(self, n):
     first = (nw.pow(self._R_alp(0), 2.0) +
              nw.pow(self._R_alp(1), 2.0)) / 2.0
     a = nw.pow(
         nw.pow(self._R_alp(0), 2.0) - nw.pow(self._R_alp(1), 2.0), 2.0)
     b = 4.0 * nw.pow(self.mats.V[0][1], 2.0) * nw.pow(self.r0, 4.0)
     second = nw.sqrt(a + b) / 2.0
     if n == 0:
         return first + second
     else:
         return first - second
 def _e_n(self, n):
     if lin_algebra:
         cal1 = self.mats.a[n][n] * self.r0
     cal2 = nw.sqrt(self._e_n_Sq_alt(n))
     if equiv_tests:
         if not gu.complex_compare(cal1, cal2):
             raise RadWellException("_e_n: " + str(cal1) + "   " +
                                    str(cal2))
     if lin_algebra:
         return cal1
     else:
         return cal2
 def _S_12(self):
     ret = 2.0 * (self._zeta_1()-self._zeta_2()) *\
         nw.sqrt(self._alp_1()*self._alp_2()*self._rho_1()*self._rho_2()) /\
         self._denum() *\
         self._exp(self._rho_1() + self._rho_2())
     return self._cast_result(ret)
Beispiel #5
0
 def fk(self, ene): #free k
     k = nw.sqrt(self.get_ene_conv()*ene)
     return nw.complex(k)
Beispiel #6
0
 def _kpos(self, ch, ene):
     return nw.sqrt(self._get_value(ch, ene))