def make(self, nwb_content: NWBFile):
        position = Position(name='position')
        cameras_ids = get_cameras_ids(self.dataset_names, self.metadata)
        meters_per_pixels = get_meters_per_pixels(cameras_ids, self.metadata)
        pos_online_paths = []
        for dataset in self.datasets:
            for pos_file in dataset.get_all_data_from_dataset('pos'):
                if pos_file.endswith('.pos_online.dat'):
                    pos_online_paths.append(
                        os.path.join(dataset.get_data_path_from_dataset('pos'),
                                     pos_file))
        first_timestamps = []
        for series_id, (conversion, pos_online_path) in enumerate(
                zip(meters_per_pixels, pos_online_paths)):
            position_df = self.get_position_with_corrected_timestamps(
                pos_online_path)
            position.create_spatial_series(
                name=f'series_{series_id}',
                description=', '.join(position_df.columns.tolist()),
                data=np.asarray(position_df),
                conversion=conversion,
                reference_frame='Upper left corner of video frame',
                timestamps=np.asarray(position_df.index),
            )
            first_timestamps.append(position_df.index[0])

        # check if timestamps are in order
        first_timestamps = np.asarray(first_timestamps)
        assert np.all(first_timestamps[:-1] < first_timestamps[1:])

        logger.info('Position: Injecting into Processing Module')
        nwb_content.processing['behavior'].add(position)
Beispiel #2
0
def generate_position_data(filename):
    '''
    Read position data from .bin or .pos file and convert to
    pynwb.behavior.SpatialSeries objects.

    Parameters:
    -------
    filename (Path or Str): Full filename of Axona file with any
        extension.

    Returns:
    -------
    position (pynwb.behavior.Position)
    '''
    position = Position()

    position_channel_names = 't,x1,y1,x2,y2,numpix1,numpix2,unused'.split(',')
    position_data = read_bin_file_position_data(filename)
    position_timestamps = position_data[:, 0]

    for ichan in range(0, position_data.shape[1]):

        spatial_series = SpatialSeries(
            name=position_channel_names[ichan],
            timestamps=position_timestamps,
            data=position_data[:, ichan],
            reference_frame='start of raw aquisition (.bin file)')
        position.add_spatial_series(spatial_series)

    return position
Beispiel #3
0
 def create(position: Position, series_id: int, fl_position: FlPosition):
     validate_parameters_not_none(__name__, fl_position.column_labels, fl_position.position_data,
                                  fl_position.conversion)
     position.create_spatial_series(
         name='series_' + str(series_id),
         description=fl_position.column_labels,
         data=fl_position.position_data,
         conversion=fl_position.conversion,
         reference_frame='Upper left corner of video frame',
         timestamps=fl_position.timestamps,
     )
Beispiel #4
0
def add_behavior(nwbfile, expt):

    bd = expt.behaviorData(imageSync=True)

    fs = 1 / expt.frame_period()

    behavior_module = nwbfile.create_processing_module(
        name='Behavior', description='Data relevant to behavior')

    # Add Normalized Position

    pos = Position(name='Normalized Position')
    pos.create_spatial_series(name='Normalized Position',
                              rate=fs,
                              data=bd['treadmillPosition'][:, np.newaxis],
                              reference_frame='0 is belt start',
                              conversion=0.001 * bd['trackLength'])

    behavior_module.add_container(pos)

    # Add Licking

    licking = BehavioralTimeSeries(name='Licking')
    licking.create_timeseries(
        name='Licking',
        data=bd['licking'],
        rate=fs,
        unit='na',
        description='1 if mouse licked during this imaging frame')

    behavior_module.add_container(licking)

    # Add Water Reward Delivery

    water = BehavioralTimeSeries(name='Water')
    water.create_timeseries(
        name='Water',
        data=bd['water'],
        rate=fs,
        unit='na',
        description='1 if water was delivered during this imaging frame')

    behavior_module.add_container(water)

    # Add Lap Times
    laps = BehavioralEvents(name='Lap Starts')
    # TODO probably not best to have laps as data and timestamps here
    laps.create_timeseries(name='Lap Starts',
                           data=bd['lap'],
                           timestamps=bd['lap'],
                           description='Frames at which laps began',
                           unit='na')

    behavior_module.add_container(laps)
Beispiel #5
0
def write_position(nwbfile, f, name='Trajectory 100'):
    """

    Parameters
    ----------
    nwbfile: pynwb.NWBFile
    f: h5py.File
    name: str (optional)

    Returns
    -------
    pynwb.core.ProcessingModule

    """
    obj = f[name]
    behavior_mod = check_module(nwbfile, 'behavior')

    spatial_series = SpatialSeries('Position',
                                   data=np.array([obj['x'], obj['y']]).T,
                                   reference_frame='NA',
                                   conversion=1 / 100.,
                                   resolution=np.nan,
                                   rate=float(1 / np.diff(obj['t'][:2]) *
                                              1000))

    behavior_mod.add_data_interface(Position(spatial_series))

    return behavior_mod
Beispiel #6
0
    def run_conversion(self, nwbfile: NWBFile, metadata: dict):
        file_path = self.source_data['file_path']

        file = h5py.File(file_path, 'r')
        cell_info = file['cell_info']

        cell_ids = [
            ''.join([chr(x[0]) for x in file[x[0]]])
            for x in cell_info['cell_id']
        ]

        times = get_data(file, 'time')
        body_pos = get_data(file, 'body_position')
        body_speed = get_data(file, 'body_speed')
        horizontal_eye_pos = get_data(file, 'horizontal_eye_position')
        vertial_eye_pos = get_data(file, 'vertical_eye_position')
        horizontal_eye_vel = get_data(file, 'horiztonal_eye_velocity')
        vertial_eye_vel = get_data(file, 'vertical_eye_velocity')

        all_spike_times = [
            file[x[0]][:].ravel() for x in cell_info['spike_times']
        ]

        behavior = nwbfile.create_processing_module(
            name='behavior', description='contains processed behavioral data')

        spatial_series = SpatialSeries(
            name='position',
            data=body_pos,
            timestamps=times,
            conversion=.01,
            reference_frame='on track. Position is in VR.')

        behavior.add(Position(spatial_series=spatial_series))

        behavior.add(
            TimeSeries(name='body_speed',
                       data=body_speed,
                       timestamps=spatial_series,
                       unit='cm/s'))

        behavior.add(
            EyeTracking(
                spatial_series=SpatialSeries(name='eye_position',
                                             data=np.c_[horizontal_eye_pos,
                                                        vertial_eye_pos],
                                             timestamps=spatial_series,
                                             reference_frame='unknown')))

        behavior.add(
            TimeSeries(name='eye_velocity',
                       data=np.c_[horizontal_eye_vel, vertial_eye_vel],
                       timestamps=spatial_series,
                       unit='unknown'))

        for spike_times, cell_id in zip(all_spike_times, cell_ids):
            id_ = int(cell_id.split('_')[-1])
            nwbfile.add_unit(spike_times=spike_times, id=id_)

        return nwbfile
Beispiel #7
0
    def test_init(self):
        sS = SpatialSeries('test_sS',
                           np.ones((2, 2)),
                           'reference_frame',
                           timestamps=[1., 2., 3.])

        pc = Position(sS)
        self.assertEqual(pc.spatial_series.get('test_sS'), sS)
Beispiel #8
0
 def setUp(self):
     spatial_series = SpatialSeries(
         name="position",
         data=np.linspace(0, 1, 20),
         rate=50.0,
         reference_frame="starting gate",
     )
     self.position = Position(spatial_series=spatial_series)
Beispiel #9
0
 def test_init(self):
     sS = SpatialSeries('test_sS',
                        'a hypothetical source',
                        list(),
                        'reference_frame',
                        timestamps=list())
     pc = Position('test_pc', sS)
     self.assertEqual(pc.source, 'test_pc')
     self.assertEqual(pc.spatial_series, [sS])
    def test_show_position(self):
        position = Position(spatial_series=self.spatial_series)

        show_position(position, default_neurodata_vis_spec)
Beispiel #11
0
    def run_conversion(self,
                       nwbfile: NWBFile,
                       metadata_dict: dict,
                       stub_test: bool = False):
        session_path = Path(self.source_data["folder_path"])
        session_id = session_path.stem

        # Stimuli
        [nwbfile.add_stimulus(x) for x in get_events(session_path)]

        # States
        sleep_state_fpath = session_path / f"{session_id}.SleepState.states.mat"
        # label renaming specific to Peyrache
        state_label_names = dict(WAKEstate="Awake",
                                 NREMstate="Non-REM",
                                 REMstate="REM")
        if sleep_state_fpath.is_file():
            matin = loadmat(sleep_state_fpath)["SleepState"]["ints"][0][0]

            table = TimeIntervals(name="states",
                                  description="Sleep states of animal.")
            table.add_column(name="label", description="Sleep state.")

            data = []
            for name in matin.dtype.names:
                for row in matin[name][0][0]:
                    data.append(
                        dict(start_time=row[0],
                             stop_time=row[1],
                             label=state_label_names[name]))
            [
                table.add_row(**row)
                for row in sorted(data, key=lambda x: x["start_time"])
            ]
            check_module(nwbfile, "behavior",
                         "Contains behavioral data.").add(table)

        # Position
        pos_names = ["RedLED", "BlueLED"]
        pos_idx_from = [0, 2]
        pos_idx_to = [2, 4]

        # Raw position
        whlfile_path = session_path / f"{session_id}.whl"
        whl_data = np.loadtxt(whlfile_path)
        for name, idx_from, idx_to in zip(pos_names, pos_idx_from, pos_idx_to):
            nwbfile.add_acquisition(
                peyrache_spatial_series(
                    name=name,
                    description=
                    "Raw sensor data. Values of -1 indicate that LED detection failed.",
                    data=whl_data[:, idx_from:idx_to],
                    conversion=np.nan,  # whl file is in arbitrary grid units
                ))

        # Processed position
        posfile_path = session_path / f"{session_id}.pos"
        if posfile_path.is_file(
        ):  # at least Mouse32-140820 was missing a .pos file
            try:
                pos_data = np.loadtxt(posfile_path)
                pos_obj = Position(name="SubjectPosition")
                for name, idx_from, idx_to in zip(pos_names, pos_idx_from,
                                                  pos_idx_to):
                    pos_obj.add_spatial_series(
                        peyrache_spatial_series(
                            name=name,
                            description=
                            ("(x,y) coordinates tracking subject movement through the maze."
                             "Values of -1 indicate that LED detection failed."
                             ),
                            data=pos_data[:, idx_from:idx_to],
                            conversion=1e-2,  # from cm to m
                        ))
                check_module(nwbfile, "behavior",
                             "Contains behavioral data.").add(pos_obj)
            except ValueError:  # data issue present in at least Mouse17-170201
                warn(f"Skipping .pos file for session {session_id}!")

        # Epochs - only available for sessions with raw data
        epoch_file = session_path / "raw" / f"{session_id}-raw-info" / f"{session_id}-behaviors.txt"
        if epoch_file.is_file():
            epoch_data = pd.read_csv(epoch_file, header=1)[f"{session_id}:"]
            epoch_dat_inds = []
            epoch_names = []
            for epochs in epoch_data:
                inds, name = epochs.split(": ")
                epoch_dat_inds.append(inds.split(" "))
                epoch_names.append(name)

            epoch_windows = [0]
            for epoch in epoch_dat_inds:
                exp_end_times = []
                for dat_ind in epoch:
                    recording_file = session_path / "raw" / f"{session_id}{dat_ind}.dat"
                    info_extractor = NeuroscopeRecordingExtractor(
                        recording_file)
                    dat_end_time = info_extractor.get_num_frames(
                    ) / info_extractor.get_sampling_frequency()  # seconds
                    exp_end_times.extend([dat_end_time])
                epoch_windows.extend([epoch_windows[-1] + sum(exp_end_times)] *
                                     2)
            epoch_windows = np.array(epoch_windows[:-1]).reshape(-1, 2)

            for j, epoch_name in enumerate(epoch_names):
                nwbfile.add_epoch(start_time=epoch_windows[j][0],
                                  stop_time=epoch_windows[j][1],
                                  tags=[epoch_name])
Beispiel #12
0
# Data interfaces
# ---------------
#
# NWB provides the concept of a *data interface*--an object for a standard
# storage location of specific types of data--through the :py:class:`~pynwb.core.NWBDataInterface` class.
# For example, :py:class:`~pynwb.behavior.Position` provides a container that holds one or more
# :py:class:`~pynwb.behavior.SpatialSeries` objects. :py:class:`~pynwb.behavior.SpatialSeries` is a subtype of
# :py:class:`~pynwb.base.TimeSeries` that represents the spatial position of an animal over time. By putting
# your position data into a :py:class:`~pynwb.behavior.Position` container, downstream users and
# tools know where to look to retrieve position data. For a comprehensive list of available data interfaces, see the
# :ref:`overview page <modules_overview>`. Here is how to create a :py:class:`~pynwb.behavior.Position` object
# named '`Position'` [#]_.

from pynwb.behavior import Position

position = Position()

####################
# You can add objects to a data interface as a method of the data interface:

position.create_spatial_series(name='position1',
                               data=np.linspace(0, 1, 20),
                               rate=50.,
                               reference_frame='starting gate')

####################
# or you can add pre-existing objects:

from pynwb.behavior import SpatialSeries

spatial_series = SpatialSeries(name='position2',
Beispiel #13
0
    def run_conversion(self, nwbfile: NWBFile, metadata: dict):
        mat_file_path = self.source_data["mat_file_path"]
        mat_file = loadmat(mat_file_path)
        trial_info = mat_file["SessionNP"]

        nwbfile.add_trial_column(
            name="reward_time",
            description="Time when subject began consuming reward.")
        nwbfile.add_trial_column(
            name="left_or_right",
            description="Time when subject began consuming reward.")
        l_r_dict = {1: "Right", 2: "Left"}
        for trial in trial_info:
            nwbfile.add_trial(start_time=trial[0],
                              stop_time=trial[1],
                              reward_time=trial[2],
                              left_or_right=l_r_dict[int(trial[3])])

        # Position
        pos_info = mat_file["whlrl"]
        pos_data = [pos_info[:, 0:1], pos_info[:, 2:3]]
        starting_time = 0.0
        rate = 20000 / 512  # from CRCNS info
        conversion = np.nan  # whl are arbitrary units
        pos_obj = Position(name="Position")
        for j in range(2):
            spatial_series_object = SpatialSeries(
                name=f"SpatialSeries{j+1}",
                description=
                "(x,y) coordinates tracking subject movement through the maze.",
                data=H5DataIO(pos_data[j], compression="gzip"),
                reference_frame="unknown",
                conversion=conversion,
                starting_time=starting_time,
                rate=rate,
                resolution=np.nan,
            )
            pos_obj.add_spatial_series(spatial_series_object)
        get_module(nwbfile=nwbfile,
                   name="behavior",
                   description="Contains processed behavioral data."
                   ).add_data_interface(pos_obj)

        linearized_pos = mat_file["whlrld"][:, 6]
        lin_pos_obj = Position(name="LinearizedPosition")
        lin_spatial_series_object = SpatialSeries(
            name="LinearizedTimeSeries",
            description=
            ("Linearized position, with '1' defined as start position (the position at the time of last nose-poking "
             "in the trial), and d=2 being the end position (position at the tiome just before reward consumption). "
             "d=0 means subject is not performing working memory trials."),
            data=H5DataIO(linearized_pos, compression="gzip"),
            reference_frame="unknown",
            conversion=conversion,
            starting_time=starting_time,
            rate=rate,
            resolution=np.nan,
        )
        lin_pos_obj.add_spatial_series(lin_spatial_series_object)
        get_module(nwbfile=nwbfile,
                   name="behavior").add_data_interface(lin_pos_obj)
Beispiel #14
0
for j in np.arange(96,192):
    nwb.add_unit(electrodes=[j],spike_times=np.ravel(f_info['spikes'][j,1]),electrode_group=electrode_group_S1)
    nwb.add_unit(electrodes=[j],spike_times=np.ravel(f_info['spikes'][j,2]),electrode_group=electrode_group_S1)



# Add behavioral information


# SpatialSeries and Position data interfaces to store cursor_pos
cursor_pos = SpatialSeries(name='cursor_position', data=f_info['cursor_pos'], 
                           reference_frame='0,0', conversion=1e-3, resolution=1e-17, 
                           timestamps=np.ravel(f_info['t']), 
                           description='The position of the cursor in Cartesian coordinates (x, y) in mm')

cursor_position = Position(name='CursorPosition',spatial_series=cursor_pos)


# SpatialSeries and Position data interfaces to store finger_pos
finger_pos = SpatialSeries(name='finger_position', data=f_info['finger_pos'],
                           reference_frame='0,0', conversion=1e-2, resolution=1e-17, 
                           timestamps=np.ravel(f_info['t']), 
                           description='The position of the working fingertip in Cartesian coordinates (z, -x, -y), as reported by the hand tracker in cm')

finger_position = Position(name='FingerPosition',spatial_series=finger_pos)


# SpatialSeries and Position data interfaces to store target_pos
target_pos = SpatialSeries(name='target_position', data=f_info['target_pos'],
                           reference_frame='0,0', conversion=1e-3, resolution=1e-17, 
                           timestamps=np.ravel(f_info['t']), 
Beispiel #15
0
 def create_all(self, fl_positions: list) -> Position:
     position = Position(name='position')
     for series_id, fl_position in enumerate(fl_positions):
         self.create(position, series_id, fl_position)
     return position
Beispiel #16
0
def yuta2nwb(session_path='/Users/bendichter/Desktop/Buzsaki/SenzaiBuzsaki2017/YutaMouse41/YutaMouse41-150903',
             subject_xls=None, include_spike_waveforms=True, stub=True):

    subject_path, session_id = os.path.split(session_path)
    fpath_base = os.path.split(subject_path)[0]
    identifier = session_id
    mouse_number = session_id[9:11]
    if '-' in session_id:
        subject_id, date_text = session_id.split('-')
        b = False
    else:
        subject_id, date_text = session_id.split('b')
        b = True

    if subject_xls is None:
        subject_xls = os.path.join(subject_path, 'YM' + mouse_number + ' exp_sheet.xlsx')
    else:
        if not subject_xls[-4:] == 'xlsx':
            subject_xls = os.path.join(subject_xls, 'YM' + mouse_number + ' exp_sheet.xlsx')

    session_start_time = dateparse(date_text, yearfirst=True)

    df = pd.read_excel(subject_xls)

    subject_data = {}
    for key in ['genotype', 'DOB', 'implantation', 'Probe', 'Surgery', 'virus injection', 'mouseID']:
        names = df.iloc[:, 0]
        if key in names.values:
            subject_data[key] = df.iloc[np.argmax(names == key), 1]

    if isinstance(subject_data['DOB'], datetime):
        age = session_start_time - subject_data['DOB']
    else:
        age = None

    subject = Subject(subject_id=subject_id, age=str(age),
                      genotype=subject_data['genotype'],
                      species='mouse')

    nwbfile = NWBFile(session_description='mouse in open exploration and theta maze',
                      identifier=identifier,
                      session_start_time=session_start_time.astimezone(),
                      file_create_date=datetime.now().astimezone(),
                      experimenter='Yuta Senzai',
                      session_id=session_id,
                      institution='NYU',
                      lab='Buzsaki',
                      subject=subject,
                      related_publications='DOI:10.1016/j.neuron.2016.12.011')

    print('reading and writing raw position data...', end='', flush=True)
    ns.add_position_data(nwbfile, session_path)

    shank_channels = ns.get_shank_channels(session_path)[:8]
    all_shank_channels = np.concatenate(shank_channels)

    print('setting up electrodes...', end='', flush=True)
    hilus_csv_path = os.path.join(fpath_base, 'early_session_hilus_chans.csv')
    lfp_channel = get_reference_elec(subject_xls, hilus_csv_path, session_start_time, session_id, b=b)
    print(lfp_channel)
    custom_column = [{'name': 'theta_reference',
                      'description': 'this electrode was used to calculate LFP canonical bands',
                      'data': all_shank_channels == lfp_channel}]
    ns.write_electrode_table(nwbfile, session_path, custom_columns=custom_column, max_shanks=max_shanks)

    print('reading LFPs...', end='', flush=True)
    lfp_fs, all_channels_data = ns.read_lfp(session_path, stub=stub)

    lfp_data = all_channels_data[:, all_shank_channels]
    print('writing LFPs...', flush=True)
    # lfp_data[:int(len(lfp_data)/4)]
    lfp_ts = ns.write_lfp(nwbfile, lfp_data, lfp_fs, name='lfp',
                          description='lfp signal for all shank electrodes')

    for name, channel in special_electrode_dict.items():
        ts = TimeSeries(name=name, description='environmental electrode recorded inline with neural data',
                        data=all_channels_data[channel], rate=lfp_fs, unit='V', conversion=np.nan, resolution=np.nan)
        nwbfile.add_acquisition(ts)

    # compute filtered LFP
    print('filtering LFP...', end='', flush=True)
    all_lfp_phases = []
    for passband in ('theta', 'gamma'):
        lfp_fft = filter_lfp(lfp_data[:, all_shank_channels == lfp_channel].ravel(), lfp_fs, passband=passband)
        lfp_phase, _ = hilbert_lfp(lfp_fft)
        all_lfp_phases.append(lfp_phase[:, np.newaxis])
    data = np.dstack(all_lfp_phases)
    print('done.', flush=True)

    if include_spike_waveforms:
        print('writing waveforms...', end='', flush=True)
        for shankn in np.arange(1, 9, dtype=int):
            ns.write_spike_waveforms(nwbfile, session_path, shankn, stub=stub)
        print('done.', flush=True)

    decomp_series = DecompositionSeries(name='LFPDecompositionSeries',
                                        description='Theta and Gamma phase for reference LFP',
                                        data=data, rate=lfp_fs,
                                        source_timeseries=lfp_ts,
                                        metric='phase', unit='radians')
    decomp_series.add_band(band_name='theta', band_limits=(4, 10))
    decomp_series.add_band(band_name='gamma', band_limits=(30, 80))

    check_module(nwbfile, 'ecephys', 'contains processed extracellular electrophysiology data').add_data_interface(decomp_series)

    [nwbfile.add_stimulus(x) for x in ns.get_events(session_path)]

    # create epochs corresponding to experiments/environments for the mouse

    sleep_state_fpath = os.path.join(session_path, '{}--StatePeriod.mat'.format(session_id))

    exist_pos_data = any(os.path.isfile(os.path.join(session_path, '{}__{}.mat'.format(session_id, task_type['name'])))
                         for task_type in task_types)

    if exist_pos_data:
        nwbfile.add_epoch_column('label', 'name of epoch')

    for task_type in task_types:
        label = task_type['name']

        file = os.path.join(session_path, session_id + '__' + label + '.mat')
        if os.path.isfile(file):
            print('loading position for ' + label + '...', end='', flush=True)

            pos_obj = Position(name=label + '_position')

            matin = loadmat(file)
            tt = matin['twhl_norm'][:, 0]
            exp_times = find_discontinuities(tt)

            if 'conversion' in task_type:
                conversion = task_type['conversion']
            else:
                conversion = np.nan

            for pos_type in ('twhl_norm', 'twhl_linearized'):
                if pos_type in matin:
                    pos_data_norm = matin[pos_type][:, 1:]

                    spatial_series_object = SpatialSeries(
                        name=label + '_{}_spatial_series'.format(pos_type),
                        data=H5DataIO(pos_data_norm, compression='gzip'),
                        reference_frame='unknown', conversion=conversion,
                        resolution=np.nan,
                        timestamps=H5DataIO(tt, compression='gzip'))
                    pos_obj.add_spatial_series(spatial_series_object)

            check_module(nwbfile, 'behavior', 'contains processed behavioral data').add_data_interface(pos_obj)
            for i, window in enumerate(exp_times):
                nwbfile.add_epoch(start_time=window[0], stop_time=window[1],
                                  label=label + '_' + str(i))
            print('done.')

    # there are occasional mismatches between the matlab struct and the neuroscope files
    # regions: 3: 'CA3', 4: 'DG'

    df_unit_features = get_UnitFeatureCell_features(fpath_base, session_id, session_path)

    celltype_names = []
    for celltype_id, region_id in zip(df_unit_features['fineCellType'].values,
                                      df_unit_features['region'].values):
        if celltype_id == 1:
            if region_id == 3:
                celltype_names.append('pyramidal cell')
            elif region_id == 4:
                celltype_names.append('granule cell')
            else:
                raise Exception('unknown type')
        elif not np.isfinite(celltype_id):
            celltype_names.append('missing')
        else:
            celltype_names.append(celltype_dict[celltype_id])

    custom_unit_columns = [
        {
            'name': 'cell_type',
            'description': 'name of cell type',
            'data': celltype_names},
        {
            'name': 'global_id',
            'description': 'global id for cell for entire experiment',
            'data': df_unit_features['unitID'].values},
        {
            'name': 'max_electrode',
            'description': 'electrode that has the maximum amplitude of the waveform',
            'data': get_max_electrodes(nwbfile, session_path),
            'table': nwbfile.electrodes
        }]

    ns.add_units(nwbfile, session_path, custom_unit_columns, max_shanks=max_shanks)

    trialdata_path = os.path.join(session_path, session_id + '__EightMazeRun.mat')
    if os.path.isfile(trialdata_path):
        trials_data = loadmat(trialdata_path)['EightMazeRun']

        trialdatainfo_path = os.path.join(fpath_base, 'EightMazeRunInfo.mat')
        trialdatainfo = [x[0] for x in loadmat(trialdatainfo_path)['EightMazeRunInfo'][0]]

        features = trialdatainfo[:7]
        features[:2] = 'start_time', 'stop_time',
        [nwbfile.add_trial_column(x, 'description') for x in features[4:] + ['condition']]

        for trial_data in trials_data:
            if trial_data[3]:
                cond = 'run_left'
            else:
                cond = 'run_right'
            nwbfile.add_trial(start_time=trial_data[0], stop_time=trial_data[1], condition=cond,
                              error_run=trial_data[4], stim_run=trial_data[5], both_visit=trial_data[6])
    """
    mono_syn_fpath = os.path.join(session_path, session_id+'-MonoSynConvClick.mat')

    matin = loadmat(mono_syn_fpath)
    exc = matin['FinalExcMonoSynID']
    inh = matin['FinalInhMonoSynID']

    #exc_obj = CatCellInfo(name='excitatory_connections',
    #                      indices_values=[], cell_index=exc[:, 0] - 1, indices=exc[:, 1] - 1)
    #module_cellular.add_container(exc_obj)
    #inh_obj = CatCellInfo(name='inhibitory_connections',
    #                      indices_values=[], cell_index=inh[:, 0] - 1, indices=inh[:, 1] - 1)
    #module_cellular.add_container(inh_obj)
    """

    if os.path.isfile(sleep_state_fpath):
        matin = loadmat(sleep_state_fpath)['StatePeriod']

        table = TimeIntervals(name='states', description='sleep states of animal')
        table.add_column(name='label', description='sleep state')

        data = []
        for name in matin.dtype.names:
            for row in matin[name][0][0]:
                data.append({'start_time': row[0], 'stop_time': row[1], 'label': name})
        [table.add_row(**row) for row in sorted(data, key=lambda x: x['start_time'])]

        check_module(nwbfile, 'behavior', 'contains behavioral data').add_data_interface(table)

    if stub:
        out_fname = session_path + '_stub.nwb'
    else:
        out_fname = session_path + '.nwb'

    print('writing NWB file...', end='', flush=True)
    with NWBHDF5IO(out_fname, mode='w') as io:
        io.write(nwbfile)
    print('done.')

    print('testing read...', end='', flush=True)
    # test read
    with NWBHDF5IO(out_fname, mode='r') as io:
        io.read()
    print('done.')
Beispiel #17
0
    def test_init(self):
        sS = SpatialSeries('test_sS', list(), 'reference_frame', timestamps=list())

        pc = Position(sS)
        self.assertEqual(pc.spatial_series.get('test_sS'), sS)
Beispiel #18
0
###

from pynwb.behavior import SpatialSeries, Position

position_data = np.array([np.linspace(0, 10, 100), np.linspace(1, 8, 100)]).T
tt_position = np.linspace(0, 100) / 200

spatial_series_object = SpatialSeries(name='name',
                                      source='source',
                                      data=position_data,
                                      reference_frame='unknown',
                                      conversion=np.nan,
                                      resolution=np.nan,
                                      timestamps=tt_position)
pos_obj = Position(source='source',
                   spatial_series=spatial_series_object,
                   name='name')
behavior_module = nwbfile.create_processing_module(
    name='behavior', source='source', description='data relevant to behavior')

behavior_module.add_container(pos_obj)

###

from pynwb.file import Subject

nwbfile.subject = Subject(age='9 months',
                          description='description',
                          species='rat',
                          genotype='genotype',
                          sex='M',
Beispiel #19
0
def add_behavior(nwbfile, behavior_file, metadata_behavior, t0):
    # The timestamps for behavior data, coming from .mat files, are in milliseconds
    # and should be transformed to seconds with / 1000

    print("adding behavior...")
    # process raw behavior
    behavior_data = loadmat(behavior_file)
    behavior_module = nwbfile.create_processing_module(
        name='behavior', description='preprocessed behavioral data')
    # Player Position
    meta_pos = metadata_behavior['Position']
    pos = Position(name=meta_pos['name'])
    all_pos = np.atleast_1d([[], [], []]).T
    all_tme = []
    for iepoch in range(len(behavior_data["behavior"])):
        if 'posdat' in behavior_data['behavior'][iepoch]:
            epoch_data = behavior_data["behavior"][iepoch]
            all_pos = np.r_[all_pos, epoch_data['posdat']]
            all_tme = np.r_[all_tme, epoch_data['tme']]

    # Metadata for SpatialSeries stored in Position
    pos.create_spatial_series(
        name=meta_pos['spatial_series'][0]['name'],
        data=all_pos,
        reference_frame=meta_pos['spatial_series'][0]['reference_frame'],
        timestamps=all_tme / 1000. - t0,
        conversion=np.nan)
    behavior_module.add(pos)

    # nlx eye movements
    nlxeye = EyeTracking(name='EyeTracking')
    # metadata for SpatialSeries stored in EyeTracking
    meta_et = metadata_behavior['EyeTracking']
    tt = np.array(behavior_data["nlxtme"]) / 1000. - t0
    nlxeye.create_spatial_series(
        name=meta_et['spatial_series'][0]['name'],
        data=np.array(behavior_data["nlxeye"]).T,
        reference_frame=meta_et['spatial_series'][0]['reference_frame'],
        rate=len(tt) / (tt[-1] - tt[0]),
        starting_time=tt[0],
        #timestamps=np.array(behavior_data["nlxtme"]) / 1000. - t0,
        conversion=np.nan)
    behavior_module.add(nlxeye)

    # trial columns
    nwbfile.add_trial_column(
        name='environment',
        description='trial environment (calibration if calibration trial)')
    # nwbfile.add_trial_column(name='trial_vars', description='trial variables - different between calibration and task')

    # event key dictionary
    event_dict = {
        "new_trial": 1000,
        "right_trial": 1001,
        "left_trial": 1002,
        "reward_on": 1,
        "reward_off": 0,
        "end_trial": 100,
        "end_presentation": 101,
        "successful_trial": 200
    }

    # process behavior here
    for iepoch in range(len(behavior_data["behavior"])):
        epoch_data = behavior_data["behavior"][iepoch]
        if iepoch < 2:
            process_behavior_calibration(nwbfile, iepoch + 1, epoch_data, t0)
        else:
            banana_flag = 1
            process_behavior(nwbfile, iepoch + 1, epoch_data, banana_flag,
                             event_dict, t0)
Beispiel #20
0
    def convert_data(
        self, nwbfile: NWBFile, metadata_dict: dict, stub_test: bool = False, include_spike_waveforms: bool = False
    ):
        session_path = self.input_args["folder_path"]
        # TODO: check/enforce format?
        task_types = metadata_dict.get("task_types", [])

        subject_path, session_id = os.path.split(session_path)
        fpath_base = os.path.split(subject_path)[0]

        [nwbfile.add_stimulus(x) for x in get_events(session_path)]

        exist_pos_data = any(
            os.path.isfile(os.path.join(session_path, "{}__{}.mat".format(session_id, task_type["name"])))
            for task_type in task_types
        )

        if exist_pos_data:
            nwbfile.add_epoch_column("label", "name of epoch")

        for task_type in task_types:
            label = task_type["name"]

            file = os.path.join(session_path, session_id + "__" + label + ".mat")
            if os.path.isfile(file):
                pos_obj = Position(name=label + "_position")

                matin = loadmat(file)
                tt = matin["twhl_norm"][:, 0]
                exp_times = find_discontinuities(tt)

                if "conversion" in task_type:
                    conversion = task_type["conversion"]
                else:
                    conversion = np.nan

                for pos_type in ("twhl_norm", "twhl_linearized"):
                    if pos_type in matin:
                        pos_data_norm = matin[pos_type][:, 1:]

                        spatial_series_object = SpatialSeries(
                            name=label + "_{}_spatial_series".format(pos_type),
                            data=H5DataIO(pos_data_norm, compression="gzip"),
                            reference_frame="unknown",
                            conversion=conversion,
                            resolution=np.nan,
                            timestamps=H5DataIO(tt, compression="gzip"),
                        )
                        pos_obj.add_spatial_series(spatial_series_object)

                check_module(nwbfile, "behavior", "contains processed behavioral data").add_data_interface(pos_obj)
                for i, window in enumerate(exp_times):
                    nwbfile.add_epoch(start_time=window[0], stop_time=window[1], label=label + "_" + str(i))

        trialdata_path = os.path.join(session_path, session_id + "__EightMazeRun.mat")
        if os.path.isfile(trialdata_path):
            trials_data = loadmat(trialdata_path)["EightMazeRun"]

            trialdatainfo_path = os.path.join(fpath_base, "EightMazeRunInfo.mat")
            trialdatainfo = [x[0] for x in loadmat(trialdatainfo_path)["EightMazeRunInfo"][0]]

            features = trialdatainfo[:7]
            features[:2] = (
                "start_time",
                "stop_time",
            )
            [nwbfile.add_trial_column(x, "description") for x in features[4:] + ["condition"]]

            for trial_data in trials_data:
                if trial_data[3]:
                    cond = "run_left"
                else:
                    cond = "run_right"
                nwbfile.add_trial(
                    start_time=trial_data[0],
                    stop_time=trial_data[1],
                    condition=cond,
                    error_run=trial_data[4],
                    stim_run=trial_data[5],
                    both_visit=trial_data[6],
                )

        sleep_state_fpath = os.path.join(session_path, "{}.SleepState.states.mat".format(session_id))
        # label renaming specific to Watson
        state_label_names = {"WAKEstate": "Awake", "NREMstate": "Non-REM", "REMstate": "REM"}
        if os.path.isfile(sleep_state_fpath):
            matin = loadmat(sleep_state_fpath)["SleepState"]["ints"][0][0]

            table = TimeIntervals(name="states", description="Sleep states of animal.")
            table.add_column(name="label", description="Sleep state.")

            data = []
            for name in matin.dtype.names:
                for row in matin[name][0][0]:
                    data.append({"start_time": row[0], "stop_time": row[1], "label": state_label_names[name]})
            [table.add_row(**row) for row in sorted(data, key=lambda x: x["start_time"])]

            check_module(nwbfile, "behavior", "contains behavioral data").add_data_interface(table)
Beispiel #21
0
    def run_conversion(self, nwbfile: NWBFile, metadata: dict):
        session_path = Path(self.source_data["folder_path"])
        session_id = session_path.stem

        # Load the file with behavioral data
        behavior_file_path = Path(session_path) / f"{session_id}.behavior.mat"
        behavior_mat = read_matlab_file(str(behavior_file_path))["behavior"]

        # Add trials
        events = behavior_mat["events"]
        trial_interval_list = events["trialIntervals"]

        data = []
        for start_time, stop_time in trial_interval_list:
            data.append(
                dict(
                    start_time=float(start_time),
                    stop_time=float(stop_time),
                ))
        [
            nwbfile.add_trial(**row)
            for row in sorted(data, key=lambda x: x["start_time"])
        ]

        trial_list = events["trials"]
        direction_list = [trial.get("direction", "") for trial in trial_list]
        trial_type_list = [trial.get("type", "") for trial in trial_list]

        if not all([direction == "" for direction in direction_list]):
            nwbfile.add_trial_column(name="direction",
                                     description="direction of the trial",
                                     data=direction_list)

        if not all([trial_type == "" for trial_type in trial_type_list]):
            nwbfile.add_trial_column(name="trial_type",
                                     description="type of trial",
                                     data=trial_type_list)

        # Position
        module_name = "behavior"
        module_description = "Contains behavioral data concerning position."
        processing_module = get_module(nwbfile=nwbfile,
                                       name=module_name,
                                       description=module_description)

        timestamps = np.array(behavior_mat["timestamps"])[..., 0]

        position = behavior_mat["position"]
        pos_data = [[x, y, z]
                    for (x, y,
                         z) in zip(position["x"], position["y"], position["y"])
                    ]
        pos_data = np.array(pos_data)[..., 0]

        unit = behavior_mat.get("units", "")

        if unit == ["m", "meter", "meters"]:
            conversion = 1.0
        else:
            warnings.warn(f"Spatial units {unit} not listed in meters; "
                          "setting conversion to nan.")
            conversion = np.nan

        description = behavior_mat.get("description",
                                       "generic_position_tracking").replace(
                                           "/", "-")
        rotation_type = behavior_mat.get("rotationType", "non_specified")

        pos_obj = Position(name=f"{description}_task".replace(" ", "_"))

        spatial_series_object = SpatialSeries(
            name="position",
            description="(x,y,z) coordinates tracking subject movement.",
            data=H5DataIO(pos_data, compression="gzip"),
            reference_frame="unknown",
            unit=unit,
            conversion=conversion,
            timestamps=timestamps,
            resolution=np.nan,
        )

        pos_obj.add_spatial_series(spatial_series_object)

        # Add error if available
        errorPerMarker = behavior_mat.get("errorPerMarker", None)
        if errorPerMarker:
            error_data = np.array([error for error in errorPerMarker])[..., 0]

            spatial_series_object = SpatialSeries(
                name="error_per_marker",
                description=
                "Estimated error for marker tracking from optitrack system.",
                data=H5DataIO(error_data, compression="gzip"),
                reference_frame="unknown",
                conversion=conversion,
                timestamps=timestamps,
                resolution=np.nan,
            )
            pos_obj.add_spatial_series(spatial_series_object)

        processing_module.add_data_interface(pos_obj)

        # Compass
        try:
            orientation = behavior_mat["orientation"]
            orientation_data = [[
                x, y, z, w
            ] for (x, y, z, w) in zip(orientation["x"], orientation["y"],
                                      orientation["z"], orientation["w"])]
            orientation_data = np.array(orientation_data)[..., 0]

            compass_obj = CompassDirection(name=f"allocentric_frame_tracking")

            spatial_series_object = SpatialSeries(
                name="orientation",
                description=
                f"(x, y, z, w) orientation coordinates, orientation type: {rotation_type}",
                data=H5DataIO(orientation_data, compression="gzip"),
                reference_frame="unknown",
                conversion=conversion,
                timestamps=timestamps,
                resolution=np.nan,
            )
            compass_obj.add_spatial_series(spatial_series_object)
            processing_module.add_data_interface(compass_obj)

        except KeyError:
            warnings.warn(f"Orientation data not found")

        # States
        module_name = "ecephys"
        module_description = "Contains behavioral data concerning classified states."
        processing_module = get_module(nwbfile=nwbfile,
                                       name=module_name,
                                       description=module_description)

        # Sleep states
        sleep_file_path = session_path / f"{session_id}.SleepState.states.mat"
        if Path(sleep_file_path).exists():
            mat_file = read_matlab_file(sleep_file_path)

            state_label_names = dict(WAKEstate="Awake",
                                     NREMstate="Non-REM",
                                     REMstate="REM",
                                     MAstate="MA")
            sleep_state_dic = mat_file["SleepState"]["ints"]
            table = TimeIntervals(name="sleep_states",
                                  description="Sleep state of the animal.")
            table.add_column(name="label", description="Sleep state.")

            data = []
            for sleep_state in state_label_names:
                values = sleep_state_dic[sleep_state]
                if len(values) != 0 and isinstance(values[0], int):
                    values = [values]
                for start_time, stop_time in values:
                    data.append(
                        dict(
                            start_time=float(start_time),
                            stop_time=float(stop_time),
                            label=state_label_names[sleep_state],
                        ))
            [
                table.add_row(**row)
                for row in sorted(data, key=lambda x: x["start_time"])
            ]
            processing_module.add(table)

        # Add epochs
        lfp_file_path = session_path / f"{session_path.name}.lfp"
        raw_file_path = session_path / f"{session_id}.dat"
        xml_file_path = session_path / f"{session_id}.xml"

        if raw_file_path.is_file():
            recorder = NeuroscopeRecordingExtractor(
                file_path=raw_file_path, xml_file_path=xml_file_path)
        else:
            recorder = NeuroscopeRecordingExtractor(
                file_path=lfp_file_path, xml_file_path=xml_file_path)

        num_frames = recorder.get_num_frames()
        sampling_frequency = recorder.get_sampling_frequency()
        end_of_the_session = num_frames / sampling_frequency

        session_start = 0.0
        start_trials_time = min(
            [interval[0] for interval in trial_interval_list])
        end_trials_time = max(
            [interval[1] for interval in trial_interval_list])
        end_of_the_session = end_of_the_session

        nwbfile.add_epoch(start_time=session_start,
                          stop_time=start_trials_time,
                          tags="before trials")
        nwbfile.add_epoch(start_time=start_trials_time,
                          stop_time=end_trials_time,
                          tags="during trials")
        nwbfile.add_epoch(start_time=end_trials_time,
                          stop_time=end_of_the_session,
                          tags="after trials")
Beispiel #22
0
    def run_conversion(self,
                       nwbfile: NWBFile,
                       metadata: dict,
                       stub_test: bool = False):
        session_path = Path(self.source_data["folder_path"])
        task_types = [
            dict(name="OpenFieldPosition_ExtraLarge"),
            dict(name="OpenFieldPosition_New_Curtain", conversion=0.46),
            dict(name="OpenFieldPosition_New", conversion=0.46),
            dict(name="OpenFieldPosition_Old_Curtain", conversion=0.46),
            dict(name="OpenFieldPosition_Old", conversion=0.46),
            dict(name="OpenFieldPosition_Oldlast", conversion=0.46),
            dict(name="EightMazePosition", conversion=0.65 / 2),
        ]

        subject_path = session_path.parent
        session_id = session_path.stem

        [nwbfile.add_stimulus(x) for x in get_events(session_path)]

        sleep_state_fpath = session_path / f"{session_id}--StatePeriod.mat"

        exist_pos_data = any([
            (session_path / "{session_id}__{task_type['name']}.mat").is_file()
            for task_type in task_types
        ])
        if exist_pos_data:
            nwbfile.add_epoch_column("label", "Name of epoch.")

        # Epoch intervals
        for task_type in task_types:
            label = task_type["name"]

            file = session_path / f"{session_id}__{label}.mat"
            if file.is_file():
                pos_obj = Position(name=f"{label}_position")

                matin = loadmat(file)
                tt = matin["twhl_norm"][:, 0]
                exp_times = find_discontinuities(tt)

                if "conversion" in task_type:
                    conversion = task_type["conversion"]
                else:
                    conversion = np.nan

                for pos_type in ("twhl_norm", "twhl_linearized"):
                    if pos_type in matin:
                        pos_data_norm = matin[pos_type][:, 1:]

                        spatial_series_object = SpatialSeries(
                            name=f"{label}_{pos_type}_spatial_series",
                            data=H5DataIO(pos_data_norm, compression="gzip"),
                            reference_frame="unknown",
                            conversion=conversion,
                            resolution=np.nan,
                            timestamps=H5DataIO(tt, compression="gzip"),
                        )
                        pos_obj.add_spatial_series(spatial_series_object)

                check_module(
                    nwbfile, "behavior",
                    "Contains processed behavioral data.").add_data_interface(
                        pos_obj)
                for i, window in enumerate(exp_times):
                    nwbfile.add_epoch(
                        start_time=window[0],
                        stop_time=window[1],
                        tags=f"{label}_{str(i)}",
                    )

        # Trial intervals
        trialdata_path = session_path / f"{session_id}__EightMazeRun.mat"
        if trialdata_path.is_file():
            trials_data = loadmat(trialdata_path)["EightMazeRun"]

            trialdatainfo_path = subject_path / "EightMazeRunInfo.mat"
            trialdatainfo = [
                x[0]
                for x in loadmat(trialdatainfo_path)["EightMazeRunInfo"][0]
            ]

            features = trialdatainfo[:7]
            features[:2] = (
                "start_time",
                "stop_time",
            )
            [
                nwbfile.add_trial_column(x, "description")
                for x in features[4:] + ["condition"]
            ]

            for trial_data in trials_data:
                if trial_data[3]:
                    cond = "run_left"
                else:
                    cond = "run_right"
                nwbfile.add_trial(
                    start_time=trial_data[0],
                    stop_time=trial_data[1],
                    condition=cond,
                    error_run=trial_data[4],
                    stim_run=trial_data[5],
                    both_visit=trial_data[6],
                )

        # SLeep states
        if sleep_state_fpath.is_file():
            matin = loadmat(sleep_state_fpath)["StatePeriod"]
            table = TimeIntervals(name="states",
                                  description="sleep states of animal")
            table.add_column(name="label", description="sleep state")
            data = []
            for name in matin.dtype.names:
                for row in matin[name][0][0]:
                    data.append(
                        dict(start_time=row[0], stop_time=row[1], label=name))
            [
                table.add_row(**row)
                for row in sorted(data, key=lambda x: x["start_time"])
            ]
            check_module(nwbfile, "behavior",
                         "Contains behavioral data.").add_data_interface(table)
Beispiel #23
0
    def convert_data(
        self,
        nwbfile: NWBFile,
        metadata_dict: dict,
        stub_test: bool = False,
        include_spike_waveforms: bool = False,
    ):
        """Convert the behavioral portion of a particular session of the GrosmarkAD dataset."""
        session_path = self.input_args["folder_path"]
        subject_path, session_id = os.path.split(session_path)

        # Stimuli
        [nwbfile.add_stimulus(x) for x in get_events(session_path)]

        # States
        sleep_state_fpath = os.path.join(session_path,
                                         "{session_id}.SleepState.states.mat")
        # label renaming specific to Watson
        state_label_names = dict(WAKEstate="Awake",
                                 NREMstate="Non-REM",
                                 REMstate="REM")
        if os.path.isfile(sleep_state_fpath):
            matin = loadmat(sleep_state_fpath)["SleepState"]["ints"][0][0]

            table = TimeIntervals(name="states",
                                  description="Sleep states of animal.")
            table.add_column(name="label", description="Sleep state.")

            data = []
            for name in matin.dtype.names:
                for row in matin[name][0][0]:
                    data.append(
                        dict(
                            start_time=row[0],
                            stop_time=row[1],
                            label=state_label_names[name],
                        ))
            [
                table.add_row(**row)
                for row in sorted(data, key=lambda x: x["start_time"])
            ]
            check_module(nwbfile, "behavior",
                         "contains behavioral data").add_data_interface(table)

        # Position
        pos_filepath = Path(
            session_path) / f"{session_id}.position.behavior.mat"
        pos_mat = loadmat(str(pos_filepath.absolute()))
        starting_time = float(
            pos_mat["position"]["timestamps"][0][0]
            [0])  # confirmed to be a regularly sampled series
        rate = float(
            pos_mat["position"]["timestamps"][0][0][1]) - starting_time
        if pos_mat["position"]["units"][0][0][0] == "m":
            conversion = 1.0
        else:
            warnings.warn(
                f"Spatial units ({pos_mat['position']['units'][0][0][0]}) not listed in meters; "
                "setting conversion to nan.")
            conversion = np.nan
        pos_data = [[x[0], y[0]] for x, y in zip(
            pos_mat["position"]["position"][0][0]["x"][0][0],
            pos_mat["position"]["position"][0][0]["y"][0][0],
        )]
        linearized_data = [[
            lin[0]
        ] for lin in pos_mat["position"]["position"][0][0]["lin"][0][0]]

        label = pos_mat["position"]["behaviorinfo"][0][0]["MazeType"][0][0][
            0].replace(" ", "")
        pos_obj = Position(name=f"{label}Position")
        spatial_series_object = SpatialSeries(
            name=f"{label}SpatialSeries",
            description=
            "(x,y) coordinates tracking subject movement through the maze.",
            data=H5DataIO(pos_data, compression="gzip"),
            reference_frame="unknown",
            conversion=conversion,
            starting_time=starting_time,
            rate=rate,
            resolution=np.nan,
        )
        pos_obj.add_spatial_series(spatial_series_object)
        check_module(
            nwbfile, "behavior",
            "contains processed behavioral data").add_data_interface(pos_obj)

        lin_pos_obj = Position(name=f"{label}LinearizedPosition")
        lin_spatial_series_object = SpatialSeries(
            name=f"{label}LinearizedTimeSeries",
            description=
            "Linearized position, defined as starting at the edge of reward area, "
            "and increasing clockwise, terminating at the opposing edge of the reward area.",
            data=H5DataIO(linearized_data, compression="gzip"),
            reference_frame="unknown",
            conversion=conversion,
            starting_time=starting_time,
            rate=rate,
            resolution=np.nan,
        )
        lin_pos_obj.add_spatial_series(lin_spatial_series_object)
        check_module(nwbfile, "behavior",
                     "contains processed behavioral data").add_data_interface(
                         lin_pos_obj)

        # Epochs
        epoch_names = list(pos_mat["position"]["Epochs"][0][0].dtype.names)
        epoch_windows = [[float(start), float(stop)]
                         for x in pos_mat["position"]["Epochs"][0][0][0][0]
                         for start, stop in x]
        nwbfile.add_epoch_column("label", "name of epoch")
        for j, epoch_name in enumerate(epoch_names):
            nwbfile.add_epoch(
                start_time=epoch_windows[j][0],
                stop_time=epoch_windows[j][1],
                label=epoch_name,
            )
Beispiel #24
0
    def test_show_position(self):
        position = Position(spatial_series=self.spatial_series)

        show_multi_container_interface(position, default_neurodata_vis_spec)
Beispiel #25
0
    matin = loadmat(file)
    tt = matin['twhl_norm'][:, 0]
    pos_data = matin['twhl_norm'][:, 1:3]

    exp_times = find_discontinuities(tt)

    spatial_series_object = SpatialSeries(name=label + ' spatial_series',
                                          source='position sensor0',
                                          data=gzip(pos_data),
                                          reference_frame='unknown',
                                          conversion=np.nan,
                                          resolution=np.nan,
                                          timestamps=gzip(tt))
    pos_obj = Position(source=source,
                       spatial_series=spatial_series_object,
                       name=label + '_position')

    module_behavior.add_container(pos_obj)

    for i, window in enumerate(exp_times):
        nwbfile.create_epoch(start_time=window[0],
                             stop_time=window[1],
                             tags=tuple(),
                             description=label + '_' + str(i),
                             timeseries=all_ts + [spatial_series_object])
    print('done.')

## load celltypes
matin = loadmat(os.path.join(fpath_base,
                             'DG_all_6__UnitFeatureSummary_add.mat'),
Beispiel #26
0
def convert(
        input_file,
        session_start_time,
        subject_date_of_birth,
        subject_id='I5',
        subject_description='naive',
        subject_genotype='wild-type',
        subject_sex='M',
        subject_weight='11.6g',
        subject_species='Mus musculus',
        subject_brain_region='Medial Entorhinal Cortex',
        surgery='Probe: +/-3.3mm ML, 0.2mm A of sinus, then as deep as possible',
        session_id='npI5_0417_baseline_1',
        experimenter='Kei Masuda',
        experiment_description='Virtual Hallway Task',
        institution='Stanford University School of Medicine',
        lab_name='Giocomo Lab'):
    """
    Read in the .mat file specified by input_file and convert to .nwb format.

    Parameters
    ----------
    input_file : np.ndarray (..., n_channels, n_time)
        the .mat file to be converted
    subject_id : string
        the unique subject ID number for the subject of the experiment
    subject_date_of_birth : datetime ISO 8601
        the date and time the subject was born
    subject_description : string
        important information specific to this subject that differentiates it from other members of it's species
    subject_genotype : string
        the genetic strain of this species.
    subject_sex : string
        Male or Female
    subject_weight :
        the weight of the subject around the time of the experiment
    subject_species : string
        the name of the species of the subject
    subject_brain_region : basestring
        the name of the brain region where the electrode probe is recording from
    surgery : str
        information about the subject's surgery to implant electrodes
    session_id: string
        human-readable ID# for the experiment session that has a one-to-one relationship with a recording session
    session_start_time : datetime
        date and time that the experiment started
    experimenter : string
        who ran the experiment, first and last name
    experiment_description : string
        what task was being run during the session
    institution : string
        what institution was the experiment performed in
    lab_name : string
        the lab where the experiment was performed

    Returns
    -------
    nwbfile : NWBFile
        The contents of the .mat file converted into the NWB format.  The nwbfile is saved to disk using NDWHDF5
    """

    # input matlab data
    matfile = hdf5storage.loadmat(input_file)

    # output path for nwb data
    def replace_last(source_string, replace_what, replace_with):
        head, _sep, tail = source_string.rpartition(replace_what)
        return head + replace_with + tail

    outpath = replace_last(input_file, '.mat', '.nwb')

    create_date = datetime.today()
    timezone_cali = pytz.timezone('US/Pacific')
    create_date_tz = timezone_cali.localize(create_date)

    # if loading data from config.yaml, convert string dates into datetime
    if isinstance(session_start_time, str):
        session_start_time = datetime.strptime(session_start_time,
                                               '%B %d, %Y %I:%M%p')
        session_start_time = timezone_cali.localize(session_start_time)

    if isinstance(subject_date_of_birth, str):
        subject_date_of_birth = datetime.strptime(subject_date_of_birth,
                                                  '%B %d, %Y %I:%M%p')
        subject_date_of_birth = timezone_cali.localize(subject_date_of_birth)

    # create unique identifier for this experimental session
    uuid_identifier = uuid.uuid1()

    # Create NWB file
    nwbfile = NWBFile(
        session_description=experiment_description,  # required
        identifier=uuid_identifier.hex,  # required
        session_id=session_id,
        experiment_description=experiment_description,
        experimenter=experimenter,
        surgery=surgery,
        institution=institution,
        lab=lab_name,
        session_start_time=session_start_time,  # required
        file_create_date=create_date_tz)  # optional

    # add information about the subject of the experiment
    experiment_subject = Subject(subject_id=subject_id,
                                 species=subject_species,
                                 description=subject_description,
                                 genotype=subject_genotype,
                                 date_of_birth=subject_date_of_birth,
                                 weight=subject_weight,
                                 sex=subject_sex)
    nwbfile.subject = experiment_subject

    # adding constants via LabMetaData container
    # constants
    sample_rate = float(matfile['sp'][0]['sample_rate'][0][0][0])
    n_channels_dat = int(matfile['sp'][0]['n_channels_dat'][0][0][0])
    dat_path = matfile['sp'][0]['dat_path'][0][0][0]
    offset = int(matfile['sp'][0]['offset'][0][0][0])
    data_dtype = matfile['sp'][0]['dtype'][0][0][0]
    hp_filtered = bool(matfile['sp'][0]['hp_filtered'][0][0][0])
    vr_session_offset = matfile['sp'][0]['vr_session_offset'][0][0][0]
    # container
    lab_metadata = LabMetaData_ext(name='LabMetaData',
                                   acquisition_sampling_rate=sample_rate,
                                   number_of_electrodes=n_channels_dat,
                                   file_path=dat_path,
                                   bytes_to_skip=offset,
                                   raw_data_dtype=data_dtype,
                                   high_pass_filtered=hp_filtered,
                                   movie_start_time=vr_session_offset)
    nwbfile.add_lab_meta_data(lab_metadata)

    # Adding trial information
    nwbfile.add_trial_column(
        'trial_contrast',
        'visual contrast of the maze through which the mouse is running')
    trial = np.ravel(matfile['trial'])
    trial_nums = np.unique(trial)
    position_time = np.ravel(matfile['post'])
    # matlab trial numbers start at 1. To correctly index trial_contract vector,
    # subtracting 1 from 'num' so index starts at 0
    for num in trial_nums:
        trial_times = position_time[trial == num]
        nwbfile.add_trial(start_time=trial_times[0],
                          stop_time=trial_times[-1],
                          trial_contrast=matfile['trial_contrast'][num - 1][0])

    # Add mouse position inside:
    position = Position()
    position_virtual = np.ravel(matfile['posx'])
    # position inside the virtual environment
    sampling_rate = 1 / (position_time[1] - position_time[0])
    position.create_spatial_series(
        name='Position',
        data=position_virtual,
        starting_time=position_time[0],
        rate=sampling_rate,
        reference_frame='The start of the trial, which begins at the start '
        'of the virtual hallway.',
        conversion=0.01,
        description='Subject position in the virtual hallway.',
        comments='The values should be >0 and <400cm. Values greater than '
        '400cm mean that the mouse briefly exited the maze.',
    )

    # physical position on the mouse wheel
    physical_posx = position_virtual
    trial_gain = np.ravel(matfile['trial_gain'])
    for num in trial_nums:
        physical_posx[trial ==
                      num] = physical_posx[trial == num] / trial_gain[num - 1]

    position.create_spatial_series(
        name='PhysicalPosition',
        data=physical_posx,
        starting_time=position_time[0],
        rate=sampling_rate,
        reference_frame='Location on wheel re-referenced to zero '
        'at the start of each trial.',
        conversion=0.01,
        description='Physical location on the wheel measured '
        'since the beginning of the trial.',
        comments='Physical location found by dividing the '
        'virtual position by the "trial_gain"')
    nwbfile.add_acquisition(position)

    # Add timing of lick events, as well as mouse's virtual position during lick event
    lick_events = BehavioralEvents()
    lick_events.create_timeseries(
        'LickEvents',
        data=np.ravel(matfile['lickx']),
        timestamps=np.ravel(matfile['lickt']),
        unit='centimeter',
        description='Subject position in virtual hallway during the lick.')
    nwbfile.add_acquisition(lick_events)

    # Add information on the visual stimulus that was shown to the subject
    # Assumed rate=60 [Hz]. Update if necessary
    # Update external_file to link to Unity environment file
    visualization = ImageSeries(
        name='ImageSeries',
        unit='seconds',
        format='external',
        external_file=list(['https://unity.com/VR-and-AR-corner']),
        starting_time=vr_session_offset,
        starting_frame=[[0]],
        rate=float(60),
        description='virtual Unity environment that the mouse navigates through'
    )
    nwbfile.add_stimulus(visualization)

    # Add the recording device, a neuropixel probe
    recording_device = nwbfile.create_device(name='neuropixel_probes')
    electrode_group_description = 'single neuropixels probe http://www.open-ephys.org/neuropixelscorded'
    electrode_group_name = 'probe1'

    electrode_group = nwbfile.create_electrode_group(
        electrode_group_name,
        description=electrode_group_description,
        location=subject_brain_region,
        device=recording_device)

    # Add information about each electrode
    xcoords = np.ravel(matfile['sp'][0]['xcoords'][0])
    ycoords = np.ravel(matfile['sp'][0]['ycoords'][0])
    data_filtered_flag = matfile['sp'][0]['hp_filtered'][0][0]
    if data_filtered_flag:
        filter_desc = 'The raw voltage signals from the electrodes were high-pass filtered'
    else:
        filter_desc = 'The raw voltage signals from the electrodes were not high-pass filtered'

    num_recording_electrodes = xcoords.shape[0]
    recording_electrodes = range(0, num_recording_electrodes)

    # create electrode columns for the x,y location on the neuropixel  probe
    # the standard x,y,z locations are reserved for Allen Brain Atlas location
    nwbfile.add_electrode_column('rel_x', 'electrode x-location on the probe')
    nwbfile.add_electrode_column('rel_y', 'electrode y-location on the probe')

    for idx in recording_electrodes:
        nwbfile.add_electrode(id=idx,
                              x=np.nan,
                              y=np.nan,
                              z=np.nan,
                              rel_x=float(xcoords[idx]),
                              rel_y=float(ycoords[idx]),
                              imp=np.nan,
                              location='medial entorhinal cortex',
                              filtering=filter_desc,
                              group=electrode_group)

    # Add information about each unit, termed 'cluster' in giocomo data
    # create new columns in unit table
    nwbfile.add_unit_column(
        'quality',
        'labels given to clusters during manual sorting in phy (1=MUA, '
        '2=Good, 3=Unsorted)')

    # cluster information
    cluster_ids = matfile['sp'][0]['cids'][0][0]
    cluster_quality = matfile['sp'][0]['cgs'][0][0]
    # spikes in time
    spike_times = np.ravel(matfile['sp'][0]['st'][0])  # the time of each spike
    spike_cluster = np.ravel(
        matfile['sp'][0]['clu'][0])  # the cluster_id that spiked at that time

    for i, cluster_id in enumerate(cluster_ids):
        unit_spike_times = spike_times[spike_cluster == cluster_id]
        waveforms = matfile['sp'][0]['temps'][0][cluster_id]
        nwbfile.add_unit(id=int(cluster_id),
                         spike_times=unit_spike_times,
                         quality=cluster_quality[i],
                         waveform_mean=waveforms,
                         electrode_group=electrode_group)

    # Trying to add another Units table to hold the results of the automatic spike sorting
    # create TemplateUnits units table
    template_units = Units(
        name='TemplateUnits',
        description='units assigned during automatic spike sorting')
    template_units.add_column(
        'tempScalingAmps',
        'scaling amplitude applied to the template when extracting spike',
        index=True)

    # information on extracted spike templates
    spike_templates = np.ravel(matfile['sp'][0]['spikeTemplates'][0])
    spike_template_ids = np.unique(spike_templates)
    # template scaling amplitudes
    temp_scaling_amps = np.ravel(matfile['sp'][0]['tempScalingAmps'][0])

    for i, spike_template_id in enumerate(spike_template_ids):
        template_spike_times = spike_times[spike_templates ==
                                           spike_template_id]
        temp_scaling_amps_per_template = temp_scaling_amps[spike_templates ==
                                                           spike_template_id]
        template_units.add_unit(id=int(spike_template_id),
                                spike_times=template_spike_times,
                                electrode_group=electrode_group,
                                tempScalingAmps=temp_scaling_amps_per_template)

    # create ecephys processing module
    spike_template_module = nwbfile.create_processing_module(
        name='ecephys',
        description='units assigned during automatic spike sorting')

    # add template_units table to processing module
    spike_template_module.add(template_units)

    print(nwbfile)
    print('converted to NWB:N')
    print('saving ...')

    with NWBHDF5IO(outpath, 'w') as io:
        io.write(nwbfile)
        print('saved', outpath)
Beispiel #27
0
def main():

    import os.path

    # prerequisites: start
    import numpy as np

    rate = 10.0
    np.random.seed(1234)
    data_len = 1000
    ephys_data = np.random.rand(data_len)
    ephys_timestamps = np.arange(data_len) / rate
    spatial_timestamps = ephys_timestamps[::10]
    spatial_data = np.cumsum(np.random.normal(size=(2,
                                                    len(spatial_timestamps))),
                             axis=-1).T
    # prerequisites: end

    # create-nwbfile: start
    from datetime import datetime
    from dateutil.tz import tzlocal
    from pynwb import NWBFile

    f = NWBFile(
        'the PyNWB tutorial',
        'my first synthetic recording',
        'EXAMPLE_ID',
        datetime.now(tzlocal()),
        experimenter='Dr. Bilbo Baggins',
        lab='Bag End Laboratory',
        institution='University of Middle Earth at the Shire',
        experiment_description=
        'I went on an adventure with thirteen dwarves to reclaim vast treasures.',
        session_id='LONELYMTN')
    # create-nwbfile: end

    # save-nwbfile: start
    from pynwb import NWBHDF5IO

    filename = "example.h5"
    io = NWBHDF5IO(filename, mode='w')
    io.write(f)
    io.close()
    # save-nwbfile: end

    os.remove(filename)

    # create-device: start
    device = f.create_device(name='trodes_rig123', source="a source")
    # create-device: end

    # create-electrode-groups: start
    electrode_name = 'tetrode1'
    source = "an hypothetical source"
    description = "an example tetrode"
    location = "somewhere in the hippocampus"

    electrode_group = f.create_electrode_group(electrode_name,
                                               source=source,
                                               description=description,
                                               location=location,
                                               device=device)

    # create-electrode-groups: end

    # create-electrode-table-region: start
    for idx in [1, 2, 3, 4]:
        f.add_electrode(idx,
                        x=1.0,
                        y=2.0,
                        z=3.0,
                        imp=float(-idx),
                        location='CA1',
                        filtering='none',
                        description='channel %s' % idx,
                        group=electrode_group)

    electrode_table_region = f.create_electrode_table_region(
        [0, 2], 'the first and third electrodes')
    # create-electrode-table-region: end

    # create-timeseries: start
    from pynwb.ecephys import ElectricalSeries
    from pynwb.behavior import SpatialSeries

    ephys_ts = ElectricalSeries(
        'test_ephys_data',
        'an hypothetical source',
        ephys_data,
        electrode_table_region,
        timestamps=ephys_timestamps,
        # Alternatively, could specify starting_time and rate as follows
        # starting_time=ephys_timestamps[0],
        # rate=rate,
        resolution=0.001,
        comments=
        "This data was randomly generated with numpy, using 1234 as the seed",
        description="Random numbers generated with numpy.random.rand")
    f.add_acquisition(ephys_ts)

    spatial_ts = SpatialSeries(
        'test_spatial_timeseries',
        'a stumbling rat',
        spatial_data,
        'origin on x,y-plane',
        timestamps=spatial_timestamps,
        resolution=0.1,
        comments="This data was generated with numpy, using 1234 as the seed",
        description="This 2D Brownian process generated with "
        "np.cumsum(np.random.normal(size=(2, len(spatial_timestamps))), axis=-1).T"
    )
    f.add_acquisition(spatial_ts)
    # create-timeseries: end

    # create-data-interface: start
    from pynwb.ecephys import LFP
    from pynwb.behavior import Position

    lfp = f.add_acquisition(LFP('a hypothetical source'))
    ephys_ts = lfp.create_electrical_series(
        'test_ephys_data',
        'an hypothetical source',
        ephys_data,
        electrode_table_region,
        timestamps=ephys_timestamps,
        resolution=0.001,
        comments=
        "This data was randomly generated with numpy, using 1234 as the seed",  # noqa: E501
        description="Random numbers generated with numpy.random.rand")

    pos = f.add_acquisition(Position('a hypothetical source'))
    spatial_ts = pos.create_spatial_series(
        'test_spatial_timeseries',
        'a stumbling rat',
        spatial_data,
        'origin on x,y-plane',
        timestamps=spatial_timestamps,
        resolution=0.1,
        comments="This data was generated with numpy, using 1234 as the seed",
        description="This 2D Brownian process generated with "
        "np.cumsum(np.random.normal(size=(2, len(spatial_timestamps))), axis=-1).T"
    )  # noqa: E501
    # create-data-interface: end

    # create-epochs: start
    epoch_tags = ('example_epoch', )

    f.add_epoch(name='epoch1',
                start_time=0.0,
                stop_time=1.0,
                tags=epoch_tags,
                description="the first test epoch",
                timeseries=[ephys_ts, spatial_ts])

    f.add_epoch(name='epoch2',
                start_time=0.0,
                stop_time=1.0,
                tags=epoch_tags,
                description="the second test epoch",
                timeseries=[ephys_ts, spatial_ts])
    # create-epochs: end

    # create-compressed-timeseries: start
    from pynwb.ecephys import ElectricalSeries
    from pynwb.behavior import SpatialSeries
    from pynwb.form.backends.hdf5 import H5DataIO

    ephys_ts = ElectricalSeries(
        'test_compressed_ephys_data',
        'an hypothetical source',
        H5DataIO(ephys_data, compress=True),
        electrode_table_region,
        timestamps=H5DataIO(ephys_timestamps, compress=True),
        resolution=0.001,
        comments=
        "This data was randomly generated with numpy, using 1234 as the seed",
        description="Random numbers generated with numpy.random.rand")
    f.add_acquisition(ephys_ts)

    spatial_ts = SpatialSeries(
        'test_compressed_spatial_timeseries',
        'a stumbling rat',
        H5DataIO(spatial_data, compress=True),
        'origin on x,y-plane',
        timestamps=H5DataIO(spatial_timestamps, compress=True),
        resolution=0.1,
        comments="This data was generated with numpy, using 1234 as the seed",
        description="This 2D Brownian process generated with "
        "np.cumsum(np.random.normal(size=(2, len(spatial_timestamps))), axis=-1).T"
    )
    f.add_acquisition(spatial_ts)
Beispiel #28
0
def conversion_function(source_paths,
                        f_nwb,
                        metadata,
                        add_raw=False,
                        add_processed=True,
                        add_behavior=True,
                        plot_rois=False):
    """
    Copy data stored in a set of .npz files to a single NWB file.

    Parameters
    ----------
    source_paths : dict
        Dictionary with paths to source files/directories. e.g.:
        {'raw_data': {'type': 'file', 'path': ''},
         'raw_info': {'type': 'file', 'path': ''}
         'processed_data': {'type': 'file', 'path': ''},
         'sparse_matrix': {'type': 'file', 'path': ''},
         'ref_image',: {'type': 'file', 'path': ''}}
    f_nwb : str
        Path to output NWB file, e.g. 'my_file.nwb'.
    metadata : dict
        Metadata dictionary
    add_raw : bool
        Whether to convert raw data or not.
    add_processed : bool
        Whether to convert processed data or not.
    add_behavior : bool
        Whether to convert behavior data or not.
    plot_rois : bool
        Plot ROIs
    """

    # Source files
    file_raw = None
    file_info = None
    file_processed = None
    file_sparse_matrix = None
    file_reference_image = None
    for k, v in source_paths.items():
        if source_paths[k]['path'] != '':
            fname = source_paths[k]['path']
            if k == 'raw_data':
                file_raw = h5py.File(fname, 'r')
            if k == 'raw_info':
                file_info = scipy.io.loadmat(fname,
                                             struct_as_record=False,
                                             squeeze_me=True)
            if k == 'processed_data':
                file_processed = np.load(fname)
            if k == 'sparse_matrix':
                file_sparse_matrix = np.load(fname)
            if k == 'ref_image':
                file_reference_image = np.load(fname)

    # Initialize a NWB object
    nwb = NWBFile(**metadata['NWBFile'])

    # Create and add device
    device = Device(name=metadata['Ophys']['Device'][0]['name'])
    nwb.add_device(device)

    # Creates one Imaging Plane for each channel
    fs = 1. / (file_processed['time'][0][1] - file_processed['time'][0][0])
    for meta_ip in metadata['Ophys']['ImagingPlane']:
        # Optical channel
        opt_ch = OpticalChannel(
            name=meta_ip['optical_channel'][0]['name'],
            description=meta_ip['optical_channel'][0]['description'],
            emission_lambda=meta_ip['optical_channel'][0]['emission_lambda'])
        nwb.create_imaging_plane(
            name=meta_ip['name'],
            optical_channel=opt_ch,
            description=meta_ip['description'],
            device=device,
            excitation_lambda=meta_ip['excitation_lambda'],
            imaging_rate=fs,
            indicator=meta_ip['indicator'],
            location=meta_ip['location'],
        )

    # Raw optical data
    if add_raw:
        print('Adding raw data...')
        for meta_tps in metadata['Ophys']['TwoPhotonSeries']:
            if meta_tps['name'][-1] == 'R':
                raw_data = file_raw['R']
            else:
                raw_data = file_raw['Y']

            def data_gen(data):
                xl, yl, zl, tl = data.shape
                chunk = 0
                while chunk < tl:
                    val = data[:, :, :, chunk]
                    chunk += 1
                    print('adding data chunk: ', chunk)
                    yield val

            xl, yl, zl, tl = raw_data.shape
            tps_data = DataChunkIterator(data=data_gen(data=raw_data),
                                         iter_axis=0,
                                         maxshape=(tl, xl, yl, zl))

            # Change dimensions from (X,Y,Z,T) in mat file to (T,X,Y,Z) nwb standard
            #raw_data = np.moveaxis(raw_data, -1, 0)

            tps = TwoPhotonSeries(
                name=meta_tps['name'],
                imaging_plane=nwb.imaging_planes[meta_tps['imaging_plane']],
                data=tps_data,
                rate=file_info['info'].daq.scanRate)
            nwb.add_acquisition(tps)

    # Processed data
    if add_processed:
        print('Adding processed data...')
        ophys_module = ProcessingModule(
            name='Ophys',
            description='contains optical physiology processed data.',
        )
        nwb.add_processing_module(ophys_module)

        # Create Image Segmentation compartment
        img_seg = ImageSegmentation(
            name=metadata['Ophys']['ImageSegmentation']['name'])
        ophys_module.add(img_seg)

        # Create plane segmentation and add ROIs
        meta_ps = metadata['Ophys']['ImageSegmentation'][
            'plane_segmentations'][0]
        ps = img_seg.create_plane_segmentation(
            name=meta_ps['name'],
            description=meta_ps['description'],
            imaging_plane=nwb.imaging_planes[meta_ps['imaging_plane']],
        )

        # Add ROIs
        indices = file_sparse_matrix['indices']
        indptr = file_sparse_matrix['indptr']
        dims = np.squeeze(file_processed['dims'])
        for start, stop in zip(indptr, indptr[1:]):
            voxel_mask = make_voxel_mask(indices[start:stop], dims)
            ps.add_roi(voxel_mask=voxel_mask)

        # Visualize 3D voxel masks
        if plot_rois:
            plot_rois_function(plane_segmentation=ps, indptr=indptr)

        # DFF measures
        dff = DfOverF(name=metadata['Ophys']['DfOverF']['name'])
        ophys_module.add(dff)

        # create ROI regions
        n_cells = file_processed['dFF'].shape[0]
        roi_region = ps.create_roi_table_region(description='RoiTableRegion',
                                                region=list(range(n_cells)))

        # create ROI response series
        dff_data = file_processed['dFF']
        tt = file_processed['time'].ravel()
        meta_rrs = metadata['Ophys']['DfOverF']['roi_response_series'][0]
        meta_rrs['data'] = dff_data.T
        meta_rrs['rois'] = roi_region
        meta_rrs['timestamps'] = tt
        dff.create_roi_response_series(**meta_rrs)

        # Creates GrayscaleVolume containers and add a reference image
        grayscale_volume = GrayscaleVolume(
            name=metadata['Ophys']['GrayscaleVolume']['name'],
            data=file_reference_image['im'])
        ophys_module.add(grayscale_volume)

    # Behavior data
    if add_behavior:
        print('Adding behavior data...')
        # Ball motion
        behavior_mod = nwb.create_processing_module(
            name='Behavior',
            description='holds processed behavior data',
        )
        meta_ts = metadata['Behavior']['TimeSeries'][0]
        meta_ts['data'] = file_processed['ball'].ravel()
        tt = file_processed['time'].ravel()
        meta_ts['timestamps'] = tt
        behavior_ts = TimeSeries(**meta_ts)
        behavior_mod.add(behavior_ts)

        # Re-arranges spatial data of body-points positions tracking
        pos = file_processed['dlc']
        n_points = 8
        pos_reshaped = pos.reshape(
            (-1, n_points, 3))  # dims=(nSamples,n_points,3)

        # Creates a Position object and add one SpatialSeries for each body-point position
        position = Position()
        for i in range(n_points):
            position.create_spatial_series(
                name='SpatialSeries_' + str(i),
                data=pos_reshaped[:, i, :],
                timestamps=tt,
                reference_frame=
                'Description defining what the zero-position is.',
                conversion=np.nan)
        behavior_mod.add(position)

    # Trial times
    trialFlag = file_processed['trialFlag'].ravel()
    trial_inds = np.hstack(
        (0, np.where(np.diff(trialFlag))[0], trialFlag.shape[0] - 1))
    trial_times = tt[trial_inds]

    for start, stop in zip(trial_times, trial_times[1:]):
        nwb.add_trial(start_time=start, stop_time=stop)

    # Saves to NWB file
    with NWBHDF5IO(f_nwb, mode='w') as io:
        io.write(nwb)
    print('NWB file saved with size: ', os.stat(f_nwb).st_size / 1e6, ' mb')
Beispiel #29
0
                dimension=[250, 250]))

centroid_fname = 'm655_D11_S1_centroids.mat'
pos_path = os.path.join(base_dir, centroid_fname)

with File(pos_path, 'r') as file:
    pos_data = np.array(file['c']).T
spatial_series = SpatialSeries(name='position',
                               data=pos_data,
                               starting_time=0.0,
                               rate=5.0,
                               units='unknown',
                               reference_frame='unknown')

pos = Position(name='position',
               spatial_series=spatial_series,
               starting_time=0.0,
               rate=np.nan)

module_pos = nwbfile.create_processing_module(name='position',
                                              description='position')

module_pos.add_container(pos)

data_names = ['cellImages', 'cellTraces', 'centroids', 'eventTimes']
mat_data = {}
mat_output_fpath = os.path.join(base_dir, 'm655_D11_S1_output.mat')
with File(mat_output_fpath, 'r') as file:
    for name in data_names:
        mat_data[name] = file['output'][name][:]

optical_channel = OpticalChannel('my channel', 'description', np.nan)
Beispiel #30
0
    def convert_data(self,
                     nwbfile: NWBFile,
                     metadata_dict: dict,
                     stub_test: bool = False,
                     include_spike_waveforms: bool = False):
        session_path = self.input_args['folder_path']
        # TODO: check/enforce format?
        task_types = metadata_dict['task_types']

        subject_path, session_id = os.path.split(session_path)
        fpath_base = os.path.split(subject_path)[0]

        [nwbfile.add_stimulus(x) for x in get_events(session_path)]

        sleep_state_fpath = os.path.join(
            session_path, '{}--StatePeriod.mat'.format(session_id))

        exist_pos_data = any(
            os.path.isfile(
                os.path.join(
                    session_path, '{}__{}.mat'.format(session_id,
                                                      task_type['name'])))
            for task_type in task_types)

        if exist_pos_data:
            nwbfile.add_epoch_column('label', 'name of epoch')

        for task_type in task_types:
            label = task_type['name']

            file = os.path.join(session_path,
                                session_id + '__' + label + '.mat')
            if os.path.isfile(file):
                pos_obj = Position(name=label + '_position')

                matin = loadmat(file)
                tt = matin['twhl_norm'][:, 0]
                exp_times = find_discontinuities(tt)

                if 'conversion' in task_type:
                    conversion = task_type['conversion']
                else:
                    conversion = np.nan

                for pos_type in ('twhl_norm', 'twhl_linearized'):
                    if pos_type in matin:
                        pos_data_norm = matin[pos_type][:, 1:]

                        spatial_series_object = SpatialSeries(
                            name=label + '_{}_spatial_series'.format(pos_type),
                            data=H5DataIO(pos_data_norm, compression='gzip'),
                            reference_frame='unknown',
                            conversion=conversion,
                            resolution=np.nan,
                            timestamps=H5DataIO(tt, compression='gzip'))
                        pos_obj.add_spatial_series(spatial_series_object)

                check_module(
                    nwbfile, 'behavior',
                    'contains processed behavioral data').add_data_interface(
                        pos_obj)
                for i, window in enumerate(exp_times):
                    nwbfile.add_epoch(start_time=window[0],
                                      stop_time=window[1],
                                      label=label + '_' + str(i))

        trialdata_path = os.path.join(session_path,
                                      session_id + '__EightMazeRun.mat')
        if os.path.isfile(trialdata_path):
            trials_data = loadmat(trialdata_path)['EightMazeRun']

            trialdatainfo_path = os.path.join(fpath_base,
                                              'EightMazeRunInfo.mat')
            trialdatainfo = [
                x[0]
                for x in loadmat(trialdatainfo_path)['EightMazeRunInfo'][0]
            ]

            features = trialdatainfo[:7]
            features[:2] = 'start_time', 'stop_time',
            [
                nwbfile.add_trial_column(x, 'description')
                for x in features[4:] + ['condition']
            ]

            for trial_data in trials_data:
                if trial_data[3]:
                    cond = 'run_left'
                else:
                    cond = 'run_right'
                nwbfile.add_trial(start_time=trial_data[0],
                                  stop_time=trial_data[1],
                                  condition=cond,
                                  error_run=trial_data[4],
                                  stim_run=trial_data[5],
                                  both_visit=trial_data[6])

        if os.path.isfile(sleep_state_fpath):
            matin = loadmat(sleep_state_fpath)['StatePeriod']

            table = TimeIntervals(name='states',
                                  description='sleep states of animal')
            table.add_column(name='label', description='sleep state')

            data = []
            for name in matin.dtype.names:
                for row in matin[name][0][0]:
                    data.append({
                        'start_time': row[0],
                        'stop_time': row[1],
                        'label': name
                    })
            [
                table.add_row(**row)
                for row in sorted(data, key=lambda x: x['start_time'])
            ]

            check_module(nwbfile, 'behavior',
                         'contains behavioral data').add_data_interface(table)