Beispiel #1
0
class TestCOF(unittest.TestCase):
    def setUp(self):
        self.n_train = 100
        self.n_test = 50
        self.contamination = 0.1
        self.roc_floor = 0.6
        self.X_train, self.y_train, self.X_test, self.y_test = generate_data(
            n_train=self.n_train,
            n_test=self.n_test,
            contamination=self.contamination,
            random_state=42)

        self.clf = LMDD(contamination=self.contamination, random_state=42)
        self.clf.fit(self.X_train)

    def test_sklearn_estimator(self):
        # check_estimator(self.clf)
        pass

    def test_parameters(self):
        assert (hasattr(self.clf, 'decision_scores_')
                and self.clf.decision_scores_ is not None)
        assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None)
        assert (hasattr(self.clf, 'threshold_')
                and self.clf.threshold_ is not None)
        assert (hasattr(self.clf, 'dis_measure_')
                and self.clf.dis_measure_ is not None)
        assert (hasattr(self.clf, 'n_iter_') and self.clf.n_iter_ is not None)
        assert (hasattr(self.clf, 'random_state_')
                and self.clf.random_state_ is not None)

    def test_train_scores(self):
        assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0])

    def test_prediction_scores(self):
        pred_scores = self.clf.decision_function(self.X_test)

        # check score shapes
        assert_equal(pred_scores.shape[0], self.X_test.shape[0])

        # check performance
        assert (roc_auc_score(self.y_test, pred_scores) >= self.roc_floor)

    def test_prediction_labels(self):
        pred_labels = self.clf.predict(self.X_test)
        assert_equal(pred_labels.shape, self.y_test.shape)

    def test_prediction_proba(self):
        pred_proba = self.clf.predict_proba(self.X_test)
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_linear(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='linear')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_unify(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='unify')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_parameter(self):
        with assert_raises(ValueError):
            self.clf.predict_proba(self.X_test, method='something')

    def test_prediction_labels_confidence(self):
        pred_labels, confidence = self.clf.predict(self.X_test,
                                                   return_confidence=True)
        assert_equal(pred_labels.shape, self.y_test.shape)
        assert_equal(confidence.shape, self.y_test.shape)
        assert (confidence.min() >= 0)
        assert (confidence.max() <= 1)

    def test_prediction_proba_linear_confidence(self):
        pred_proba, confidence = self.clf.predict_proba(self.X_test,
                                                        method='linear',
                                                        return_confidence=True)
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

        assert_equal(confidence.shape, self.y_test.shape)
        assert (confidence.min() >= 0)
        assert (confidence.max() <= 1)

    def test_fit_predict(self):
        pred_labels = self.clf.fit_predict(self.X_train)
        assert_equal(pred_labels.shape, self.y_train.shape)

    def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test,
                                       self.y_test,
                                       scoring='something')

    def test_check_parameters(self):
        with assert_raises(ValueError):
            LMDD(contamination=10.)
        with assert_raises(ValueError):
            LMDD(dis_measure='unknown')
        with assert_raises(TypeError):
            LMDD(dis_measure=5)
        with assert_raises(TypeError):
            LMDD(n_iter='not int')
        with assert_raises(ValueError):
            LMDD(n_iter=-1)
        with assert_raises(ValueError):
            LMDD(random_state='not valid')
        with assert_raises(ValueError):
            LMDD(random_state=-1)

    def test_model_clone(self):
        clone_clf = clone(self.clf)

    def tearDown(self):
        pass
Beispiel #2
0
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)

    # train LMDD detector
    clf_name = 'LMDD'
    clf = LMDD(random_state=42)
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
    y_test_scores = clf.decision_function(X_test)  # outlier scores

    # evaluate and print the results
    print("\nOn Training Data:")
    evaluate_print(clf_name, y_train, y_train_scores)
    print("\nOn Test Data:")
    evaluate_print(clf_name, y_test, y_test_scores)

    # visualize the results
    visualize(clf_name,
              X_train,
              y_train,
              X_test,
              y_test,
              y_train_pred,