Beispiel #1
0
def LazyOACallback_gurobi(cb_m, cb_opt, cb_where, solve_data, config):
    """This is a GUROBI callback function defined for LP/NLP based B&B algorithm.

    Parameters
    ----------
    cb_m : Pyomo model
        The MIP main problem.
    cb_opt : SolverFactory
        The gurobi_persistent solver.
    cb_where : int
        An enum member of gurobipy.GRB.Callback.
    solve_data : MindtPySolveData
        Data container that holds solve-instance data.
    config : ConfigBlock
        The specific configurations for MindtPy.
    """
    if cb_where == gurobipy.GRB.Callback.MIPSOL:
        # gurobipy.GRB.Callback.MIPSOL means that an integer solution is found during the branch and bound process
        if solve_data.should_terminate:
            cb_opt._solver_model.terminate()
            return
        cb_opt.cbGetSolution(vars=cb_m.MindtPy_utils.variable_list)
        handle_lazy_main_feasible_solution_gurobi(cb_m, cb_opt, solve_data,
                                                  config)

        if config.add_cuts_at_incumbent:
            if config.strategy == 'OA':
                add_oa_cuts(solve_data.mip, None, solve_data, config, cb_opt)

        # Regularization is activated after the first feasible solution is found.
        if config.add_regularization is not None and solve_data.best_solution_found is not None:
            # The main problem might be unbounded, regularization is activated only when a valid bound is provided.
            if not solve_data.dual_bound_improved and not solve_data.primal_bound_improved:
                config.logger.debug(
                    'The bound and the best found solution have neither been improved.'
                    'We will skip solving the regularization problem and the Fixed-NLP subproblem'
                )
                solve_data.primal_bound_improved = False
                return
            if solve_data.dual_bound != solve_data.dual_bound_progress[0]:
                main_mip, main_mip_results = solve_main(
                    solve_data, config, regularization_problem=True)
                handle_regularization_main_tc(main_mip, main_mip_results,
                                              solve_data, config)

        if abs(solve_data.primal_bound -
               solve_data.dual_bound) <= config.absolute_bound_tolerance:
            config.logger.info(
                'MindtPy exiting on bound convergence. '
                '|Primal Bound: {} - Dual Bound: {}| <= (absolute tolerance {})  \n'
                .format(solve_data.primal_bound, solve_data.dual_bound,
                        config.absolute_bound_tolerance))
            solve_data.results.solver.termination_condition = tc.optimal
            cb_opt._solver_model.terminate()
            return

        # # check if the same integer combination is obtained.
        solve_data.curr_int_sol = get_integer_solution(
            solve_data.working_model, string_zero=True)

        if solve_data.curr_int_sol in set(solve_data.integer_list):
            config.logger.debug(
                'This integer combination has been explored. '
                'We will skip solving the Fixed-NLP subproblem.')
            solve_data.primal_bound_improved = False
            if config.strategy == 'GOA':
                if config.add_no_good_cuts:
                    var_values = list(
                        v.value for v in
                        solve_data.working_model.MindtPy_utils.variable_list)
                    add_no_good_cuts(var_values, solve_data, config)
                return
            elif config.strategy == 'OA':
                return
        else:
            solve_data.integer_list.append(solve_data.curr_int_sol)

        # solve subproblem
        # The constraint linearization happens in the handlers
        fixed_nlp, fixed_nlp_result = solve_subproblem(solve_data, config)

        handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result, solve_data,
                                 config, cb_opt)
Beispiel #2
0
def MindtPy_iteration_loop(solve_data, config):
    """
    Main loop for MindtPy Algorithms

    This is the outermost function for the algorithms in this package; this function controls the progression of
    solving the model.

    Parameters
    ----------
    solve_data: MindtPy Data Container
        data container that holds solve-instance data
    config: ConfigBlock
        contains the specific configurations for the algorithm
    """
    last_iter_cuts = False
    while solve_data.mip_iter < config.iteration_limit:

        config.logger.info(
            '---MindtPy main Iteration %s---'
            % (solve_data.mip_iter+1))

        solve_data.mip_subiter = 0
        # solve MILP main problem
        if config.strategy in {'OA', 'GOA', 'ECP'}:
            main_mip, main_mip_results = solve_main(solve_data, config)
            if main_mip_results is not None:
                if not config.single_tree:
                    if main_mip_results.solver.termination_condition is tc.optimal:
                        handle_main_optimal(main_mip, solve_data, config)
                    elif main_mip_results.solver.termination_condition is tc.infeasible:
                        handle_main_infeasible(main_mip, solve_data, config)
                        last_iter_cuts = True
                        break
                    else:
                        handle_main_other_conditions(
                            main_mip, main_mip_results, solve_data, config)
                    # Call the MILP post-solve callback
                    with time_code(solve_data.timing, 'Call after main solve'):
                        config.call_after_main_solve(main_mip, solve_data)
            else:
                config.logger.info('Algorithm should terminate here.')
                break
        else:
            raise NotImplementedError()

        # regularization is activated after the first feasible solution is found.
        if config.add_regularization is not None and solve_data.best_solution_found is not None and not config.single_tree:
            # the main problem might be unbounded, regularization is activated only when a valid bound is provided.
            if (solve_data.objective_sense == minimize and solve_data.LB != float('-inf')) or (solve_data.objective_sense == maximize and solve_data.UB != float('inf')):
                main_mip, main_mip_results = solve_main(
                    solve_data, config, regularization_problem=True)
                handle_regularization_main_tc(
                    main_mip, main_mip_results, solve_data, config)
        if config.add_regularization is not None and config.single_tree:
            solve_data.curr_int_sol = get_integer_solution(
                solve_data.mip, string_zero=True)
            copy_var_list_values(
                main_mip.MindtPy_utils.variable_list,
                solve_data.working_model.MindtPy_utils.variable_list,
                config)
            if solve_data.curr_int_sol not in set(solve_data.integer_list):
                fixed_nlp, fixed_nlp_result = solve_subproblem(
                    solve_data, config)
                handle_nlp_subproblem_tc(
                    fixed_nlp, fixed_nlp_result, solve_data, config)

        if algorithm_should_terminate(solve_data, config, check_cycling=True):
            last_iter_cuts = False
            break

        if not config.single_tree and config.strategy != 'ECP':  # if we don't use lazy callback, i.e. LP_NLP
            # Solve NLP subproblem
            # The constraint linearization happens in the handlers
            fixed_nlp, fixed_nlp_result = solve_subproblem(solve_data, config)
            handle_nlp_subproblem_tc(
                fixed_nlp, fixed_nlp_result, solve_data, config)

            # Call the NLP post-solve callback
            with time_code(solve_data.timing, 'Call after subproblem solve'):
                config.call_after_subproblem_solve(fixed_nlp, solve_data)

        if algorithm_should_terminate(solve_data, config, check_cycling=False):
            last_iter_cuts = True
            break

        if config.strategy == 'ECP':
            add_ecp_cuts(solve_data.mip, solve_data, config)

        # if config.strategy == 'PSC':
        #     # If the hybrid algorithm is not making progress, switch to OA.
        #     progress_required = 1E-6
        #     if solve_data.objective_sense == minimize:
        #         log = solve_data.LB_progress
        #         sign_adjust = 1
        #     else:
        #         log = solve_data.UB_progress
        #         sign_adjust = -1
        #     # Maximum number of iterations in which the lower (optimistic)
        #     # bound does not improve before switching to OA
        #     max_nonimprove_iter = 5
        #     making_progress = True
        #     # TODO-romeo Unneccesary for OA and ROA, right?
        #     for i in range(1, max_nonimprove_iter + 1):
        #         try:
        #             if (sign_adjust * log[-i]
        #                     <= (log[-i - 1] + progress_required)
        #                     * sign_adjust):
        #                 making_progress = False
        #             else:
        #                 making_progress = True
        #                 break
        #         except IndexError:
        #             # Not enough history yet, keep going.
        #             making_progress = True
        #             break
        #     if not making_progress and (
        #             config.strategy == 'hPSC' or
        #             config.strategy == 'PSC'):
        #         config.logger.info(
        #             'Not making enough progress for {} iterations. '
        #             'Switching to OA.'.format(max_nonimprove_iter))
        #         config.strategy = 'OA'

    # if add_no_good_cuts is True, the bound obtained in the last iteration is no reliable.
    # we correct it after the iteration.
    if (config.add_no_good_cuts or config.use_tabu_list) and config.strategy is not 'FP' and not solve_data.should_terminate and config.add_regularization is None:
        bound_fix(solve_data, config, last_iter_cuts)
Beispiel #3
0
def MindtPy_iteration_loop(solve_data, config):
    """Main loop for MindtPy Algorithms.

    This is the outermost function for the algorithms in this package; this function controls the progression of
    solving the model.

    Args:
        solve_data (MindtPySolveData): data container that holds solve-instance data.
        config (ConfigBlock): the specific configurations for MindtPy.

    Raises:
        ValueError: the strategy value is not correct or not included.
    """
    last_iter_cuts = False
    while solve_data.mip_iter < config.iteration_limit:

        solve_data.mip_subiter = 0
        # solve MILP main problem
        if config.strategy in {'OA', 'GOA', 'ECP'}:
            main_mip, main_mip_results = solve_main(solve_data, config)
            if main_mip_results is not None:
                if not config.single_tree:
                    if main_mip_results.solver.termination_condition is tc.optimal:
                        handle_main_optimal(main_mip, solve_data, config)
                    elif main_mip_results.solver.termination_condition is tc.infeasible:
                        handle_main_infeasible(main_mip, solve_data, config)
                        last_iter_cuts = True
                        break
                    else:
                        handle_main_other_conditions(main_mip,
                                                     main_mip_results,
                                                     solve_data, config)
                    # Call the MILP post-solve callback
                    with time_code(solve_data.timing, 'Call after main solve'):
                        config.call_after_main_solve(main_mip, solve_data)
            else:
                config.logger.info('Algorithm should terminate here.')
                break
        else:
            raise ValueError()

        # regularization is activated after the first feasible solution is found.
        if config.add_regularization is not None and solve_data.best_solution_found is not None and not config.single_tree:
            # the main problem might be unbounded, regularization is activated only when a valid bound is provided.
            if (solve_data.objective_sense == minimize and solve_data.LB !=
                    float('-inf')) or (solve_data.objective_sense == maximize
                                       and solve_data.UB != float('inf')):
                main_mip, main_mip_results = solve_main(
                    solve_data, config, regularization_problem=True)
                handle_regularization_main_tc(main_mip, main_mip_results,
                                              solve_data, config)

        # TODO: add descriptions for the following code
        if config.add_regularization is not None and config.single_tree:
            solve_data.curr_int_sol = get_integer_solution(solve_data.mip,
                                                           string_zero=True)
            copy_var_list_values(
                main_mip.MindtPy_utils.variable_list,
                solve_data.working_model.MindtPy_utils.variable_list, config)
            if solve_data.curr_int_sol not in set(solve_data.integer_list):
                fixed_nlp, fixed_nlp_result = solve_subproblem(
                    solve_data, config)
                handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result,
                                         solve_data, config)
        if algorithm_should_terminate(solve_data, config, check_cycling=True):
            last_iter_cuts = False
            break

        if not config.single_tree and config.strategy != 'ECP':  # if we don't use lazy callback, i.e. LP_NLP
            # Solve NLP subproblem
            # The constraint linearization happens in the handlers
            if not config.solution_pool:
                fixed_nlp, fixed_nlp_result = solve_subproblem(
                    solve_data, config)
                handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result,
                                         solve_data, config)

                # Call the NLP post-solve callback
                with time_code(solve_data.timing,
                               'Call after subproblem solve'):
                    config.call_after_subproblem_solve(fixed_nlp, solve_data)

                if algorithm_should_terminate(solve_data,
                                              config,
                                              check_cycling=False):
                    last_iter_cuts = True
                    break
            else:
                if config.mip_solver == 'cplex_persistent':
                    solution_pool_names = main_mip_results._solver_model.solution.pool.get_names(
                    )
                elif config.mip_solver == 'gurobi_persistent':
                    solution_pool_names = list(
                        range(main_mip_results._solver_model.SolCount))
                # list to store the name and objective value of the solutions in the solution pool
                solution_name_obj = []
                for name in solution_pool_names:
                    if config.mip_solver == 'cplex_persistent':
                        obj = main_mip_results._solver_model.solution.pool.get_objective_value(
                            name)
                    elif config.mip_solver == 'gurobi_persistent':
                        main_mip_results._solver_model.setParam(
                            gurobipy.GRB.Param.SolutionNumber, name)
                        obj = main_mip_results._solver_model.PoolObjVal
                    solution_name_obj.append([name, obj])
                solution_name_obj.sort(
                    key=itemgetter(1),
                    reverse=solve_data.objective_sense == maximize)
                counter = 0
                for name, _ in solution_name_obj:
                    # the optimal solution of the main problem has been added to integer_list above
                    # so we should skip checking cycling for the first solution in the solution pool
                    if counter >= 1:
                        copy_var_list_values_from_solution_pool(
                            solve_data.mip.MindtPy_utils.variable_list,
                            solve_data.working_model.MindtPy_utils.
                            variable_list,
                            config,
                            solver_model=main_mip_results._solver_model,
                            var_map=main_mip_results.
                            _pyomo_var_to_solver_var_map,
                            solution_name=name)
                        solve_data.curr_int_sol = get_integer_solution(
                            solve_data.working_model)
                        if solve_data.curr_int_sol in set(
                                solve_data.integer_list):
                            config.logger.info(
                                'The same combination has been explored and will be skipped here.'
                            )
                            continue
                        else:
                            solve_data.integer_list.append(
                                solve_data.curr_int_sol)
                    counter += 1
                    fixed_nlp, fixed_nlp_result = solve_subproblem(
                        solve_data, config)
                    handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result,
                                             solve_data, config)

                    # Call the NLP post-solve callback
                    with time_code(solve_data.timing,
                                   'Call after subproblem solve'):
                        config.call_after_subproblem_solve(
                            fixed_nlp, solve_data)

                    if algorithm_should_terminate(solve_data,
                                                  config,
                                                  check_cycling=False):
                        last_iter_cuts = True
                        break

                    if counter >= config.num_solution_iteration:
                        break

        if config.strategy == 'ECP':
            add_ecp_cuts(solve_data.mip, solve_data, config)

        # if config.strategy == 'PSC':
        #     # If the hybrid algorithm is not making progress, switch to OA.
        #     progress_required = 1E-6
        #     if solve_data.objective_sense == minimize:
        #         log = solve_data.LB_progress
        #         sign_adjust = 1
        #     else:
        #         log = solve_data.UB_progress
        #         sign_adjust = -1
        #     # Maximum number of iterations in which the lower (optimistic)
        #     # bound does not improve before switching to OA
        #     max_nonimprove_iter = 5
        #     making_progress = True
        #     # TODO-romeo Unnecessary for OA and ROA, right?
        #     for i in range(1, max_nonimprove_iter + 1):
        #         try:
        #             if (sign_adjust * log[-i]
        #                     <= (log[-i - 1] + progress_required)
        #                     * sign_adjust):
        #                 making_progress = False
        #             else:
        #                 making_progress = True
        #                 break
        #         except IndexError:
        #             # Not enough history yet, keep going.
        #             making_progress = True
        #             break
        #     if not making_progress and (
        #             config.strategy == 'hPSC' or
        #             config.strategy == 'PSC'):
        #         config.logger.info(
        #             'Not making enough progress for {} iterations. '
        #             'Switching to OA.'.format(max_nonimprove_iter))
        #         config.strategy = 'OA'

    # if add_no_good_cuts is True, the bound obtained in the last iteration is no reliable.
    # we correct it after the iteration.
    if (
            config.add_no_good_cuts or config.use_tabu_list
    ) and config.strategy != 'FP' and not solve_data.should_terminate and config.add_regularization is None:
        fix_dual_bound(solve_data, config, last_iter_cuts)
    config.logger.info(
        ' ============================================================================================='
    )
Beispiel #4
0
def LazyOACallback_gurobi(cb_m, cb_opt, cb_where, solve_data, config):
    """This is a GUROBI callback function defined for LP/NLP based B&B algorithm. 

    Args:
        cb_m (Pyomo model): the MIP main problem.
        cb_opt (SolverFactory): the gurobi_persistent solver.
        cb_where (int): an enum member of gurobipy.GRB.Callback.
        solve_data (MindtPySolveData): data container that holds solve-instance data.
        config (ConfigBlock): the specific configurations for MindtPy.
    """
    if cb_where == gurobipy.GRB.Callback.MIPSOL:
        # gurobipy.GRB.Callback.MIPSOL means that an integer solution is found during the branch and bound process
        if solve_data.should_terminate:
            cb_opt._solver_model.terminate()
            return
        cb_opt.cbGetSolution(vars=cb_m.MindtPy_utils.variable_list)
        handle_lazy_main_feasible_solution_gurobi(cb_m, cb_opt, solve_data,
                                                  config)

        if config.add_cuts_at_incumbent:
            if config.strategy == 'OA':
                add_oa_cuts(solve_data.mip, None, solve_data, config, cb_opt)

        # # regularization is activated after the first feasible solution is found.
        if config.add_regularization is not None and solve_data.best_solution_found is not None:
            # the main problem might be unbounded, regularization is activated only when a valid bound is provided.
            if not solve_data.bound_improved and not solve_data.solution_improved:
                config.logger.debug(
                    'the bound and the best found solution have neither been improved.'
                    'We will skip solving the regularization problem and the Fixed-NLP subproblem'
                )
                solve_data.solution_improved = False
                return
            if ((solve_data.objective_sense == minimize
                 and solve_data.LB != float('-inf'))
                    or (solve_data.objective_sense == maximize
                        and solve_data.UB != float('inf'))):
                main_mip, main_mip_results = solve_main(
                    solve_data, config, regularization_problem=True)
                handle_regularization_main_tc(main_mip, main_mip_results,
                                              solve_data, config)

        if solve_data.LB + config.bound_tolerance >= solve_data.UB:
            config.logger.info('MindtPy exiting on bound convergence. '
                               'LB: {} + (tol {}) >= UB: {}\n'.format(
                                   solve_data.LB, config.bound_tolerance,
                                   solve_data.UB))
            solve_data.results.solver.termination_condition = tc.optimal
            cb_opt._solver_model.terminate()
            return

        # # check if the same integer combination is obtained.
        solve_data.curr_int_sol = get_integer_solution(
            solve_data.working_model, string_zero=True)

        if solve_data.curr_int_sol in set(solve_data.integer_list):
            config.logger.debug(
                'This integer combination has been explored. '
                'We will skip solving the Fixed-NLP subproblem.')
            solve_data.solution_improved = False
            if config.strategy == 'GOA':
                if config.add_no_good_cuts:
                    var_values = list(
                        v.value for v in
                        solve_data.working_model.MindtPy_utils.variable_list)
                    add_no_good_cuts(var_values, solve_data, config)
                return
            elif config.strategy == 'OA':
                return
        else:
            solve_data.integer_list.append(solve_data.curr_int_sol)

        # solve subproblem
        # The constraint linearization happens in the handlers
        fixed_nlp, fixed_nlp_result = solve_subproblem(solve_data, config)

        handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result, solve_data,
                                 config, cb_opt)