Beispiel #1
0
    def _get_base_model(self):
        model = aml.ConcreteModel()
        model.x = aml.Var()
        model.y = aml.Var()
        model.d1 = aml.Param(mutable=True, initialize=0.0)
        model.d2 = aml.Param(mutable=True, initialize=0.0)
        model.d3 = aml.Param(mutable=True, initialize=0.0)
        model.cost = aml.Expression([1, 2])
        model.cost[1].expr = model.x
        model.cost[2].expr = model.d1 * model.y
        model.o = aml.Objective(expr=model.cost[1] + model.cost[2])
        model.c1 = aml.Constraint(expr=model.x >= 0)
        model.c2 = aml.Constraint(expr=model.y * model.d2 >= model.d3)
        model.varstage = VariableStageAnnotation()
        model.varstage.declare(model.x, 1)
        model.varstage.declare(model.y, 2)
        model.stagecost = StageCostAnnotation()
        model.stagecost.declare(model.cost[1], 1)
        model.stagecost.declare(model.cost[2], 2)
        model.stochdata = StochasticDataAnnotation()
        model.stochdata.declare(model.d1,
                                distribution=TableDistribution([0.0, 1.0]))
        model.stochdata.declare(model.d2,
                                distribution=TableDistribution([0.0, 1.0]))
        model.stochdata.declare(model.d3,
                                distribution=TableDistribution([0.0, 1.0]))

        return model
Beispiel #2
0
 def test_bad_distribution_constraint(self):
     model = self._get_base_model()
     del model.stochdata
     model.stochdata = StochasticDataAnnotation()
     model.stochdata.declare(model.d2,
                             distribution=UniformDistribution(0.0, 1.0))
     sp = EmbeddedSP(model)
     with self.assertRaises(ValueError) as cm:
         pyomo.pysp.convert.smps.convert_embedded(self.tmpdir, 'test', sp)
     self.assertEqual(
         str(cm.exception),
         ("Invalid distribution type 'UniformDistribution' for stochastic "
          "parameter 'd2'. The embedded SMPS writer currently "
          "only supports discrete table distributions of type "
          "pyomo.pysp.embeddedsp.TableDistribution."))
Beispiel #3
0
    def _get_baa99_sp(self):
        model = baa99_basemodel.model.clone()
        model.varstage = VariableStageAnnotation()
        model.varstage.declare(model.x1, 1)
        model.varstage.declare(model.x2, 1)

        model.stagecost = StageCostAnnotation()
        model.stagecost.declare(model.FirstStageCost, 1)
        model.stagecost.declare(model.SecondStageCost, 2)

        model.stochdata = StochasticDataAnnotation()
        model.stochdata.declare(model.d1_rhs,
                                distribution=TableDistribution(
                                    model.d1_rhs_table))
        model.stochdata.declare(model.d2_rhs,
                                distribution=TableDistribution(
                                    model.d2_rhs_table))

        return EmbeddedSP(model)
def create_embedded():

    model = aml.ConcreteModel()
    model.d1 = aml.Param(mutable=True, initialize=0)
    model.d2 = aml.Param(mutable=True, initialize=0)
    model.d3 = aml.Param(mutable=True, initialize=0)
    model.d4 = aml.Param(mutable=True, initialize=0)
    # first stage
    model.x = aml.Var(bounds=(0, 10))
    # first stage derived
    model.y = aml.Expression(expr=model.x + 1)
    model.fx = aml.Var()
    # second stage
    model.z = aml.Var(bounds=(-10, 10))
    # second stage derived
    model.q = aml.Expression(expr=model.z**2)
    model.fz = aml.Var()
    model.r = aml.Var()
    # stage costs
    model.StageCost = aml.Expression([1, 2])
    model.StageCost.add(1, model.fx)
    model.StageCost.add(2, -model.fz + model.r + model.d1)
    model.o = aml.Objective(expr=aml.sum_product(model.StageCost))

    model.c_first_stage = aml.Constraint(expr=model.x >= 0)

    # test our handling of intermediate variables that
    # are created by Piecewise but can not necessarily
    # be declared on the scenario tree
    model.p_first_stage = aml.Piecewise(model.fx,
                                        model.x,
                                        pw_pts=[0., 2., 5., 7., 10.],
                                        pw_constr_type='EQ',
                                        pw_repn='INC',
                                        f_rule=[10., 10., 9., 10., 10.],
                                        force_pw=True)

    model.c_second_stage = aml.Constraint(
        expr=model.x + model.r * model.d2 >= -100)
    model.cL_second_stage = aml.Constraint(expr=model.d3 >= -model.r)
    model.cU_second_stage = aml.Constraint(expr=model.r <= 0)

    # exercise more of the code by making this an indexed
    # block
    model.p_second_stage = aml.Piecewise([1],
                                         model.fz,
                                         model.z,
                                         pw_pts=[-10, -5., 0., 5., 10.],
                                         pw_constr_type='EQ',
                                         pw_repn='INC',
                                         f_rule=[0., 0., -1., model.d4, 1.],
                                         force_pw=True)

    # annotate the model
    model.varstage = VariableStageAnnotation()
    # first stage
    model.varstage.declare(model.x, 1)
    model.varstage.declare(model.y, 1, derived=True)
    model.varstage.declare(model.fx, 1, derived=True)
    model.varstage.declare(model.p_first_stage, 1, derived=True)
    # second stage
    model.varstage.declare(model.z, 2)
    model.varstage.declare(model.q, 2, derived=True)
    model.varstage.declare(model.fz, 2, derived=True)
    model.varstage.declare(model.r, 2, derived=True)
    model.varstage.declare(model.p_second_stage, 2, derived=True)

    model.stagecost = StageCostAnnotation()
    for i in [1, 2]:
        model.stagecost.declare(model.StageCost[i], i)

    model.stochdata = StochasticDataAnnotation()
    model.stochdata.declare(model.d1,
                            distribution=TableDistribution([0.0, 1.0, 2.0]))
    model.stochdata.declare(model.d2,
                            distribution=TableDistribution([0.0, 1.0, 2.0]))
    model.stochdata.declare(model.d3,
                            distribution=TableDistribution([0.0, 1.0, 2.0]))
    model.stochdata.declare(model.d4,
                            distribution=TableDistribution([0.0, 1.0, 2.0]))

    return EmbeddedSP(model)
Beispiel #5
0
    def test_compute_time_stage(self):
        model = ConcreteModel()
        model.x = Var()
        model.y = Var([0, 1])
        model.z = Var()
        model.p = Param(mutable=True)
        model.cost = Expression([0, 1])
        model.cost[0] = model.x + model.y[0]
        model.cost[1] = model.p + model.y[1] + model.y[0] * model.p
        model.o = Objective(expr=model.cost[0] + model.cost[1])
        model.c = ConstraintList()
        model.c.add(model.x >= 1)  # 1
        model.c.add(model.y[0] >= 1)  # 2
        model.c.add(model.p * model.y[0] >= 1)  # 3
        model.c.add(model.y[0] >= model.p)  # 4
        model.c.add(model.p <= model.y[1])  # 5
        model.c.add(model.y[1] <= 1)  # 6
        model.c.add(model.x >= model.p)  # 7
        model.c.add(model.z == 1)  # 8

        model.varstage = VariableStageAnnotation()
        model.varstage.declare(model.x, 1)
        model.varstage.declare(model.y[0], 1, derived=True)
        model.varstage.declare(model.y[1], 2)
        model.varstage.declare(model.z, 2, derived=True)

        model.stagecost = StageCostAnnotation()
        model.stagecost.declare(model.cost[0], 1)
        model.stagecost.declare(model.cost[1], 2)

        model.stochdata = StochasticDataAnnotation()
        model.stochdata.declare(model.p,
                                distribution=UniformDistribution(0, 1))
        sp = EmbeddedSP(model)

        #
        # check variables
        #
        self.assertEqual(sp.compute_time_stage(model.x), min(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.x, derived_last_stage=True),
            min(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.y[0]),
                         min(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.y[0], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.y[1]),
                         max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.y[1], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.z), max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.z, derived_last_stage=True),
            max(sp.time_stages))

        #
        # check constraints
        #
        self.assertEqual(sp.compute_time_stage(model.c[1]),
                         min(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.c[1], derived_last_stage=True),
            min(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.c[2]),
                         min(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.c[2], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.c[3]),
                         max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.c[3], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.c[4]),
                         max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.c[4], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.c[5]),
                         max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.c[5], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.c[6]),
                         max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.c[6], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.c[7]),
                         max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.c[7], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.c[8]),
                         max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.c[8], derived_last_stage=True),
            max(sp.time_stages))

        #
        # check objectives and expressions
        #
        self.assertEqual(sp.compute_time_stage(model.cost[0]),
                         min(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.cost[0], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.cost[1]),
                         max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.cost[1], derived_last_stage=True),
            max(sp.time_stages))

        self.assertEqual(sp.compute_time_stage(model.o), max(sp.time_stages))
        self.assertEqual(
            sp.compute_time_stage(model.o, derived_last_stage=True),
            max(sp.time_stages))