Beispiel #1
0
 def forward(self, observation=[]):
     states = [pyprob.sample(init_dist)]
     for o in observation:
         state = pyprob.sample(self.trans_dists[int(states[-1])])
         pyprob.observe(self.obs_dists[int(state)], o)
         states.append(state)
     return torch.stack([util.one_hot(3, int(s)) for s in states])
    def __init__(self, *args, **kwargs):
        class MiniCaptcha(Model):
            def __init__(self, alphabet=['A', 'B', 'C', 'D', 'E', 'F'], noise=0.1):
                self._alphabet = alphabet
                self._probs = [1/len(alphabet) for i in range(len(alphabet))]
                self._noise = noise
                super().__init__('MiniCaptcha')

            def render(self, text, size=18, height=28, width=28, x=6, y=6):
                pil_font = ImageFont.truetype('Ubuntu-B.ttf', size=size)
                text_width, text_height = pil_font.getsize(text)
                canvas = Image.new('RGB', [height, width], (255, 255, 255))
                draw = ImageDraw.Draw(canvas)
                draw.text((x, y), text, font=pil_font, fill='#000000')
                return torch.from_numpy(1 - (np.asarray(canvas) / 255.0))[:, :, 0].unsqueeze(0).float()

            def forward(self):
                letter_id = pyprob.sample(Categorical(self._probs))
                image = self.render(self._alphabet[letter_id]).view(-1)
                likelihood = Normal(image, self._noise)
                pyprob.observe(likelihood, name='query_image')
                return letter_id

        self._model = MiniCaptcha()
        self._test_images = [self._model.render(letter).view(-1) for letter in self._model._alphabet]
        self._true_posteriors = [Categorical(util.one_hot(len(self._model._alphabet), i) + util._epsilon) for i in range(len(self._model._alphabet))]
        super().__init__(*args, **kwargs)
 def forward(self):
     states = [pyprob.sample(init_dist)]
     for i in range(self.obs_length):
         state = pyprob.sample(self.trans_dists[int(states[-1])])
         pyprob.observe(self.obs_dists[int(state)], name='obs{}'.format(i))
         states.append(state)
     return torch.stack([util.one_hot(3, int(s)) for s in states])
Beispiel #4
0
def get_sample(s):
    address = s.Address().decode("utf-8")
    distribution = None
    # sample.instance = s.Instance()
    value = NDArray_to_Tensor(s.Value())
    distribution_type = s.DistributionType()
    if distribution_type != infcomp.protocol.Distribution.Distribution().NONE:
        if distribution_type == infcomp.protocol.Distribution.Distribution(
        ).UniformDiscrete:
            p = infcomp.protocol.UniformDiscrete.UniformDiscrete()
            p.Init(s.Distribution().Bytes, s.Distribution().Pos)
            distribution = UniformDiscrete(p.PriorMin(), p.PriorSize())
            if value.dim() > 0:
                value = util.one_hot(distribution.prior_size,
                                     int(value[0]) - distribution.prior_min)
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).MultivariateNormal:
            p = infcomp.protocol.MultivariateNormal.MultivariateNormal()
            p.Init(s.Distribution().Bytes, s.Distribution().Pos)
            distribution = MultivariateNormal(NDArray_to_Tensor(p.PriorMean()),
                                              NDArray_to_Tensor(p.PriorCov()))
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).Normal:
            p = infcomp.protocol.Normal.Normal()
            p.Init(s.Distribution().Bytes, s.Distribution().Pos)
            distribution = Normal(p.PriorMean(), p.PriorStd())
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).Flip:
            distribution = Flip()
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).Discrete:
            p = infcomp.protocol.Discrete.Discrete()
            p.Init(s.Distribution().Bytes, s.Distribution().Pos)
            distribution = Discrete(p.PriorSize())
            if value.dim() > 0:
                value = util.one_hot(distribution.prior_size, int(value[0]))
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).Categorical:
            p = infcomp.protocol.Categorical.Categorical()
            p.Init(s.Distribution().Bytes, s.Distribution().Pos)
            distribution = Categorical(p.PriorSize())
            if value.dim() > 0:
                value = util.one_hot(distribution.prior_size, int(value[0]))
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).UniformContinuous:
            p = infcomp.protocol.UniformContinuous.UniformContinuous()
            p.Init(s.Distribution().Bytes, s.Distribution().Pos)
            distribution = UniformContinuous(p.PriorMin(), p.PriorMax())
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).UniformContinuousAlt:
            p = infcomp.protocol.UniformContinuousAlt.UniformContinuousAlt()
            p.Init(s.Distribution().Bytes, s.Distribution().Pos)
            distribution = UniformContinuousAlt(p.PriorMin(), p.PriorMax())
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).Laplace:
            p = infcomp.protocol.Laplace.Laplace()
            p.Init(s.Distribution().Bytes, s.Distribution().Pos)
            distribution = Laplace(p.PriorLocation(), p.PriorScale())
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).Gamma:
            distribution = Gamma()
        elif distribution_type == infcomp.protocol.Distribution.Distribution(
        ).Beta:
            distribution = Beta()
        else:
            util.logger.log(
                'get_sample: Unknown distribution:Distribution id: {0}.'.
                format(distribution_type))
    sample = Sample(address, distribution, value)
    return sample