Beispiel #1
0
 def call(self, space, args_w):
     w_obj = args_w[0]
     out = None
     if len(args_w) > 1:
         out = args_w[1]
         if space.is_w(out, space.w_None):
             out = None
     w_obj = convert_to_array(space, w_obj)
     dtype = w_obj.get_dtype()
     if dtype.is_flexible_type():
         raise OperationError(space.w_TypeError,
                              space.wrap('Not implemented for this type'))
     if (self.int_only and not dtype.is_int_type()
             or not self.allow_bool and dtype.is_bool_type()
             or not self.allow_complex and dtype.is_complex_type()):
         raise OperationError(
             space.w_TypeError,
             space.wrap("ufunc %s not supported for the input type" %
                        self.name))
     calc_dtype = find_unaryop_result_dtype(
         space,
         w_obj.get_dtype(),
         promote_to_float=self.promote_to_float,
         promote_bools=self.promote_bools)
     if out is not None:
         if not isinstance(out, W_NDimArray):
             raise OperationError(space.w_TypeError,
                                  space.wrap('output must be an array'))
         res_dtype = out.get_dtype()
         #if not w_obj.get_dtype().can_cast_to(res_dtype):
         #    raise operationerrfmt(space.w_TypeError,
         #        "Cannot cast ufunc %s output from dtype('%s') to dtype('%s') with casting rule 'same_kind'", self.name, w_obj.get_dtype().name, res_dtype.name)
     elif self.bool_result:
         res_dtype = interp_dtype.get_dtype_cache(space).w_booldtype
     else:
         res_dtype = calc_dtype
         if self.complex_to_float and calc_dtype.is_complex_type():
             if calc_dtype.name == 'complex64':
                 res_dtype = interp_dtype.get_dtype_cache(
                     space).w_float32dtype
             else:
                 res_dtype = interp_dtype.get_dtype_cache(
                     space).w_float64dtype
     if w_obj.is_scalar():
         w_val = self.func(calc_dtype,
                           w_obj.get_scalar_value().convert_to(calc_dtype))
         if out is None:
             return w_val
         if out.is_scalar():
             out.set_scalar_value(w_val)
         else:
             out.fill(res_dtype.coerce(space, w_val))
         return out
     shape = shape_agreement(space,
                             w_obj.get_shape(),
                             out,
                             broadcast_down=False)
     return loop.call1(space, shape, self.func, calc_dtype, res_dtype,
                       w_obj, out)
Beispiel #2
0
 def setslice(self, space, arr):
     impl = arr.implementation
     if impl.is_scalar():
         self.fill(impl.get_scalar_value())
         return
     shape = shape_agreement(space, self.get_shape(), arr)
     if impl.storage == self.storage:
         impl = impl.copy(space)
     loop.setslice(space, shape, self, impl)
Beispiel #3
0
 def setslice(self, space, arr):
     impl = arr.implementation
     if impl.is_scalar():
         self.fill(impl.get_scalar_value())
         return
     shape = shape_agreement(space, self.get_shape(), arr)
     if impl.storage == self.storage:
         impl = impl.copy(space)
     loop.setslice(space, shape, self, impl)
Beispiel #4
0
 def setslice(self, space, arr):
     if len(arr.get_shape()) > 0 and len(self.get_shape()) == 0:
         raise oefmt(space.w_ValueError,
             "could not broadcast input array from shape "
             "(%s) into shape ()",
             ','.join([str(x) for x in arr.get_shape()]))
     shape = shape_agreement(space, self.get_shape(), arr)
     impl = arr.implementation
     if impl.storage == self.storage:
         impl = impl.copy(space)
     loop.setslice(space, shape, self, impl)
Beispiel #5
0
 def setslice(self, space, arr):
     if len(arr.get_shape()) > 0 and len(self.get_shape()) == 0:
         raise oefmt(
             space.w_ValueError,
             "could not broadcast input array from shape "
             "(%s) into shape ()",
             ','.join([str(x) for x in arr.get_shape()]))
     shape = shape_agreement(space, self.get_shape(), arr)
     impl = arr.implementation
     if impl.storage == self.storage:
         impl = impl.copy(space)
     loop.setslice(space, shape, self, impl)
Beispiel #6
0
 def call(self, space, args_w):
     w_obj = args_w[0]
     out = None
     if len(args_w) > 1:
         out = args_w[1]
         if space.is_w(out, space.w_None):
             out = None
     w_obj = convert_to_array(space, w_obj)
     dtype = w_obj.get_dtype()
     if dtype.is_flexible_type():
         raise OperationError(space.w_TypeError,
                   space.wrap('Not implemented for this type'))
     if (self.int_only and not dtype.is_int_type() or
             not self.allow_bool and dtype.is_bool_type() or
             not self.allow_complex and dtype.is_complex_type()):
         raise OperationError(space.w_TypeError, space.wrap(
             "ufunc %s not supported for the input type" % self.name))
     calc_dtype = find_unaryop_result_dtype(space,
                               w_obj.get_dtype(),
                               promote_to_float=self.promote_to_float,
                               promote_bools=self.promote_bools)
     if out is not None:
         if not isinstance(out, W_NDimArray):
             raise OperationError(space.w_TypeError, space.wrap(
                                             'output must be an array'))
         res_dtype = out.get_dtype()
         #if not w_obj.get_dtype().can_cast_to(res_dtype):
         #    raise operationerrfmt(space.w_TypeError,
         #        "Cannot cast ufunc %s output from dtype('%s') to dtype('%s') with casting rule 'same_kind'", self.name, w_obj.get_dtype().name, res_dtype.name)
     elif self.bool_result:
         res_dtype = interp_dtype.get_dtype_cache(space).w_booldtype
     else:
         res_dtype = calc_dtype
         if self.complex_to_float and calc_dtype.is_complex_type():
             if calc_dtype.name == 'complex64':
                 res_dtype = interp_dtype.get_dtype_cache(space).w_float32dtype
             else:
                 res_dtype = interp_dtype.get_dtype_cache(space).w_float64dtype
     if w_obj.is_scalar():
         w_val = self.func(calc_dtype,
                           w_obj.get_scalar_value().convert_to(calc_dtype))
         if out is None:
             return w_val
         if out.is_scalar():
             out.set_scalar_value(w_val)
         else:
             out.fill(res_dtype.coerce(space, w_val))
         return out
     shape = shape_agreement(space, w_obj.get_shape(), out,
                             broadcast_down=False)
     return loop.call1(space, shape, self.func, calc_dtype, res_dtype,
                       w_obj, out)
Beispiel #7
0
 def setslice(self, space, arr):
     if len(arr.get_shape()) >  len(self.get_shape()):
         # record arrays get one extra dimension
         if not self.dtype.is_record() or \
                 len(arr.get_shape()) > len(self.get_shape()) + 1:
             raise oefmt(space.w_ValueError,
                 "could not broadcast input array from shape "
                 "(%s) into shape (%s)",
                 ','.join([str(x) for x in arr.get_shape()]),
                 ','.join([str(x) for x in self.get_shape()]),
                 )
     shape = shape_agreement(space, self.get_shape(), arr)
     impl = arr.implementation
     if impl.storage == self.storage:
         impl = impl.copy(space)
     loop.setslice(space, shape, self, impl)
Beispiel #8
0
 def setslice(self, space, arr):
     if len(arr.get_shape()) > len(self.get_shape()):
         # record arrays get one extra dimension
         if not self.dtype.is_record() or \
                 len(arr.get_shape()) > len(self.get_shape()) + 1:
             raise oefmt(
                 space.w_ValueError,
                 "could not broadcast input array from shape "
                 "(%s) into shape (%s)",
                 ','.join([str(x) for x in arr.get_shape()]),
                 ','.join([str(x) for x in self.get_shape()]),
             )
     shape = shape_agreement(space, self.get_shape(), arr)
     impl = arr.implementation
     if impl.storage == self.storage:
         impl = impl.copy(space)
     loop.setslice(space, shape, self, impl)
Beispiel #9
0
def where(space, w_arr, w_x=None, w_y=None):
    """where(condition, [x, y])

    Return elements, either from `x` or `y`, depending on `condition`.

    If only `condition` is given, return ``condition.nonzero()``.

    Parameters
    ----------
    condition : array_like, bool
        When True, yield `x`, otherwise yield `y`.
    x, y : array_like, optional
        Values from which to choose. `x` and `y` need to have the same
        shape as `condition`.

    Returns
    -------
    out : ndarray or tuple of ndarrays
        If both `x` and `y` are specified, the output array contains
        elements of `x` where `condition` is True, and elements from
        `y` elsewhere.

        If only `condition` is given, return the tuple
        ``condition.nonzero()``, the indices where `condition` is True.

    See Also
    --------
    nonzero, choose

    Notes
    -----
    If `x` and `y` are given and input arrays are 1-D, `where` is
    equivalent to::

        [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

    Examples
    --------
    >>> np.where([[True, False], [True, True]],
    ...          [[1, 2], [3, 4]],
    ...          [[9, 8], [7, 6]])
    array([[1, 8],
           [3, 4]])

    >>> np.where([[0, 1], [1, 0]])
    (array([0, 1]), array([1, 0]))

    >>> x = np.arange(9.).reshape(3, 3)
    >>> np.where( x > 5 )
    (array([2, 2, 2]), array([0, 1, 2]))
    >>> x[np.where( x > 3.0 )]               # Note: result is 1D.
    array([ 4.,  5.,  6.,  7.,  8.])
    >>> np.where(x < 5, x, -1)               # Note: broadcasting.
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -1.],
           [-1., -1., -1.]])


    NOTE: support for not passing x and y is unsupported
    """
    if space.is_none(w_y):
        if space.is_none(w_x):
            raise OperationError(
                space.w_NotImplementedError,
                space.wrap("1-arg where unsupported right now"))
        raise OperationError(
            space.w_ValueError,
            space.wrap("Where should be called with either 1 or 3 arguments"))
    if space.is_none(w_x):
        raise OperationError(
            space.w_ValueError,
            space.wrap("Where should be called with either 1 or 3 arguments"))
    arr = convert_to_array(space, w_arr)
    x = convert_to_array(space, w_x)
    y = convert_to_array(space, w_y)
    if x.is_scalar() and y.is_scalar() and arr.is_scalar():
        if arr.get_dtype().itemtype.bool(arr.get_scalar_value()):
            return x
        return y
    dtype = ufuncs.find_binop_result_dtype(space, x.get_dtype(), y.get_dtype())
    shape = shape_agreement(space, arr.get_shape(), x)
    shape = shape_agreement(space, shape, y)
    out = W_NDimArray.from_shape(space, shape, dtype)
    return loop.where(space, out, shape, arr, x, y, dtype)
Beispiel #10
0
def where(space, w_arr, w_x=None, w_y=None):
    """where(condition, [x, y])

    Return elements, either from `x` or `y`, depending on `condition`.

    If only `condition` is given, return ``condition.nonzero()``.

    Parameters
    ----------
    condition : array_like, bool
        When True, yield `x`, otherwise yield `y`.
    x, y : array_like, optional
        Values from which to choose. `x` and `y` need to have the same
        shape as `condition`.

    Returns
    -------
    out : ndarray or tuple of ndarrays
        If both `x` and `y` are specified, the output array contains
        elements of `x` where `condition` is True, and elements from
        `y` elsewhere.

        If only `condition` is given, return the tuple
        ``condition.nonzero()``, the indices where `condition` is True.

    See Also
    --------
    nonzero, choose

    Notes
    -----
    If `x` and `y` are given and input arrays are 1-D, `where` is
    equivalent to::

        [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

    Examples
    --------
    >>> np.where([[True, False], [True, True]],
    ...          [[1, 2], [3, 4]],
    ...          [[9, 8], [7, 6]])
    array([[1, 8],
           [3, 4]])

    >>> np.where([[0, 1], [1, 0]])
    (array([0, 1]), array([1, 0]))

    >>> x = np.arange(9.).reshape(3, 3)
    >>> np.where( x > 5 )
    (array([2, 2, 2]), array([0, 1, 2]))
    >>> x[np.where( x > 3.0 )]               # Note: result is 1D.
    array([ 4.,  5.,  6.,  7.,  8.])
    >>> np.where(x < 5, x, -1)               # Note: broadcasting.
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -1.],
           [-1., -1., -1.]])


    NOTE: support for not passing x and y is unsupported
    """
    if space.is_none(w_y):
        if space.is_none(w_x):
            raise OperationError(space.w_NotImplementedError, space.wrap("1-arg where unsupported right now"))
        raise OperationError(space.w_ValueError, space.wrap("Where should be called with either 1 or 3 arguments"))
    if space.is_none(w_x):
        raise OperationError(space.w_ValueError, space.wrap("Where should be called with either 1 or 3 arguments"))
    arr = convert_to_array(space, w_arr)
    x = convert_to_array(space, w_x)
    y = convert_to_array(space, w_y)
    if x.is_scalar() and y.is_scalar() and arr.is_scalar():
        if arr.get_dtype().itemtype.bool(arr.get_scalar_value()):
            return x
        return y
    dtype = interp_ufuncs.find_binop_result_dtype(space, x.get_dtype(), y.get_dtype())
    shape = shape_agreement(space, arr.get_shape(), x)
    shape = shape_agreement(space, shape, y)
    out = W_NDimArray.from_shape(space, shape, dtype)
    return loop.where(out, shape, arr, x, y, dtype)
Beispiel #11
0
    def call(self, space, args_w):
        if len(args_w) > 2:
            [w_lhs, w_rhs, w_out] = args_w
        else:
            [w_lhs, w_rhs] = args_w
            w_out = None
        w_lhs = convert_to_array(space, w_lhs)
        w_rhs = convert_to_array(space, w_rhs)
        w_ldtype = w_lhs.get_dtype()
        w_rdtype = w_rhs.get_dtype()
        if w_ldtype.is_str_type() and w_rdtype.is_str_type() and \
           self.comparison_func:
            pass
        elif (w_ldtype.is_str_type() or w_rdtype.is_str_type()) and \
            self.comparison_func and w_out is None:
            return space.wrap(False)
        elif (w_ldtype.is_flexible_type() or \
                w_rdtype.is_flexible_type()):
            raise OperationError(space.w_TypeError, space.wrap(
                 'unsupported operand dtypes %s and %s for "%s"' % \
                 (w_rdtype.get_name(), w_ldtype.get_name(),
                  self.name)))

        if self.are_common_types(w_ldtype, w_rdtype):
            if not w_lhs.is_scalar() and w_rhs.is_scalar():
                w_rdtype = w_ldtype
            elif w_lhs.is_scalar() and not w_rhs.is_scalar():
                w_ldtype = w_rdtype
        if (self.int_only and (not w_ldtype.is_int_type() or not w_rdtype.is_int_type()) or
                not self.allow_bool and (w_ldtype.is_bool_type() or w_rdtype.is_bool_type()) or
                not self.allow_complex and (w_ldtype.is_complex_type() or w_rdtype.is_complex_type())):
            raise OperationError(space.w_TypeError, space.wrap("Unsupported types"))
        calc_dtype = find_binop_result_dtype(space,
            w_ldtype, w_rdtype,
            promote_to_float=self.promote_to_float,
            promote_bools=self.promote_bools)
        if space.is_none(w_out):
            out = None
        elif not isinstance(w_out, W_NDimArray):
            raise OperationError(space.w_TypeError, space.wrap(
                    'output must be an array'))
        else:
            out = w_out
            calc_dtype = out.get_dtype()
        if self.comparison_func:
            res_dtype = interp_dtype.get_dtype_cache(space).w_booldtype
        else:
            res_dtype = calc_dtype
        if w_lhs.is_scalar() and w_rhs.is_scalar():
            arr = self.func(calc_dtype,
                w_lhs.get_scalar_value().convert_to(calc_dtype),
                w_rhs.get_scalar_value().convert_to(calc_dtype)
            )
            if isinstance(out, W_NDimArray):
                if out.is_scalar():
                    out.set_scalar_value(arr)
                else:
                    out.fill(arr)
            else:
                out = arr
            return out
        new_shape = shape_agreement(space, w_lhs.get_shape(), w_rhs)
        new_shape = shape_agreement(space, new_shape, out, broadcast_down=False)
        return loop.call2(space, new_shape, self.func, calc_dtype,
                          res_dtype, w_lhs, w_rhs, out)
Beispiel #12
0
    def call(self, space, args_w):
        if len(args_w) > 2:
            [w_lhs, w_rhs, w_out] = args_w
        else:
            [w_lhs, w_rhs] = args_w
            w_out = None
        w_lhs = convert_to_array(space, w_lhs)
        w_rhs = convert_to_array(space, w_rhs)
        w_ldtype = w_lhs.get_dtype()
        w_rdtype = w_rhs.get_dtype()
        if w_ldtype.is_str_type() and w_rdtype.is_str_type() and \
           self.comparison_func:
            pass
        elif (w_ldtype.is_str_type() or w_rdtype.is_str_type()) and \
            self.comparison_func and w_out is None:
            return space.wrap(False)
        elif (w_ldtype.is_flexible_type() or \
                w_rdtype.is_flexible_type()):
            raise OperationError(space.w_TypeError, space.wrap(
                 'unsupported operand dtypes %s and %s for "%s"' % \
                 (w_rdtype.get_name(), w_ldtype.get_name(),
                  self.name)))

        if self.are_common_types(w_ldtype, w_rdtype):
            if not w_lhs.is_scalar() and w_rhs.is_scalar():
                w_rdtype = w_ldtype
            elif w_lhs.is_scalar() and not w_rhs.is_scalar():
                w_ldtype = w_rdtype
        if (self.int_only and
            (not w_ldtype.is_int_type() or not w_rdtype.is_int_type())
                or not self.allow_bool and
            (w_ldtype.is_bool_type() or w_rdtype.is_bool_type())
                or not self.allow_complex and
            (w_ldtype.is_complex_type() or w_rdtype.is_complex_type())):
            raise OperationError(space.w_TypeError,
                                 space.wrap("Unsupported types"))
        calc_dtype = find_binop_result_dtype(
            space,
            w_ldtype,
            w_rdtype,
            promote_to_float=self.promote_to_float,
            promote_bools=self.promote_bools)
        if space.is_none(w_out):
            out = None
        elif not isinstance(w_out, W_NDimArray):
            raise OperationError(space.w_TypeError,
                                 space.wrap('output must be an array'))
        else:
            out = w_out
            calc_dtype = out.get_dtype()
        if self.comparison_func:
            res_dtype = interp_dtype.get_dtype_cache(space).w_booldtype
        else:
            res_dtype = calc_dtype
        if w_lhs.is_scalar() and w_rhs.is_scalar():
            arr = self.func(calc_dtype,
                            w_lhs.get_scalar_value().convert_to(calc_dtype),
                            w_rhs.get_scalar_value().convert_to(calc_dtype))
            if isinstance(out, W_NDimArray):
                if out.is_scalar():
                    out.set_scalar_value(arr)
                else:
                    out.fill(arr)
            else:
                out = arr
            return out
        new_shape = shape_agreement(space, w_lhs.get_shape(), w_rhs)
        new_shape = shape_agreement(space,
                                    new_shape,
                                    out,
                                    broadcast_down=False)
        return loop.call2(space, new_shape, self.func, calc_dtype, res_dtype,
                          w_lhs, w_rhs, out)
Beispiel #13
0
    def call(self, space, args_w):
        if len(args_w) > 2:
            [w_lhs, w_rhs, w_out] = args_w
        else:
            [w_lhs, w_rhs] = args_w
            w_out = None
        w_lhs = convert_to_array(space, w_lhs)
        w_rhs = convert_to_array(space, w_rhs)
        w_ldtype = w_lhs.get_dtype()
        w_rdtype = w_rhs.get_dtype()
        if w_ldtype.is_str() and w_rdtype.is_str() and \
                self.comparison_func:
            pass
        elif (w_ldtype.is_str() or w_rdtype.is_str()) and \
                self.comparison_func and w_out is None:
            return space.wrap(False)
        elif w_ldtype.is_flexible() or w_rdtype.is_flexible():
            if self.comparison_func:
                if self.name == 'equal' or self.name == 'not_equal':
                    res = w_ldtype.eq(space, w_rdtype)
                    if not res:
                        return space.wrap(self.name == 'not_equal')
                else:
                    return space.w_NotImplemented
            else:
                raise oefmt(space.w_TypeError,
                            'unsupported operand dtypes %s and %s for "%s"',
                            w_rdtype.get_name(), w_ldtype.get_name(),
                            self.name)

        if self.are_common_types(w_ldtype, w_rdtype):
            if not w_lhs.is_scalar() and w_rhs.is_scalar():
                w_rdtype = w_ldtype
            elif w_lhs.is_scalar() and not w_rhs.is_scalar():
                w_ldtype = w_rdtype
        calc_dtype = find_binop_result_dtype(space,
            w_ldtype, w_rdtype,
            promote_to_float=self.promote_to_float,
            promote_bools=self.promote_bools)
        if (self.int_only and (not w_ldtype.is_int() or
                               not w_rdtype.is_int() or
                               not calc_dtype.is_int()) or
                not self.allow_bool and (w_ldtype.is_bool() or
                                         w_rdtype.is_bool()) or
                not self.allow_complex and (w_ldtype.is_complex() or
                                            w_rdtype.is_complex())):
            raise oefmt(space.w_TypeError,
                "ufunc '%s' not supported for the input types", self.name)
        if space.is_none(w_out):
            out = None
        elif not isinstance(w_out, W_NDimArray):
            raise oefmt(space.w_TypeError, 'output must be an array')
        else:
            out = w_out
            calc_dtype = out.get_dtype()
        if self.comparison_func:
            res_dtype = descriptor.get_dtype_cache(space).w_booldtype
        else:
            res_dtype = calc_dtype
        if w_lhs.is_scalar() and w_rhs.is_scalar():
            arr = self.func(calc_dtype,
                w_lhs.get_scalar_value().convert_to(space, calc_dtype),
                w_rhs.get_scalar_value().convert_to(space, calc_dtype)
            )
            if isinstance(out, W_NDimArray):
                if out.is_scalar():
                    out.set_scalar_value(arr)
                else:
                    out.fill(space, arr)
            else:
                out = arr
            return out
        new_shape = shape_agreement(space, w_lhs.get_shape(), w_rhs)
        new_shape = shape_agreement(space, new_shape, out, broadcast_down=False)
        return loop.call2(space, new_shape, self.func, calc_dtype,
                          res_dtype, w_lhs, w_rhs, out)
Beispiel #14
0
    def __init__(self,
                 space,
                 w_seq,
                 w_flags,
                 w_op_flags,
                 w_op_dtypes,
                 w_casting,
                 w_op_axes,
                 w_itershape,
                 buffersize=0,
                 order=NPY.KEEPORDER,
                 allow_backward=True):
        self.external_loop = False
        self.buffered = False
        self.tracked_index = ''
        self.common_dtype = False
        self.delay_bufalloc = False
        self.grow_inner = False
        self.ranged = False
        self.refs_ok = False
        self.reduce_ok = False
        self.zerosize_ok = False
        self.index_iter = None
        self.done = False
        self.first_next = True
        self.op_axes = []
        self.allow_backward = allow_backward
        if not space.is_w(w_casting, space.w_None):
            self.casting = space.str_w(w_casting)
        else:
            self.casting = 'safe'
        # convert w_seq operands to a list of W_NDimArray
        if space.isinstance_w(w_seq, space.w_tuple) or \
           space.isinstance_w(w_seq, space.w_list):
            w_seq_as_list = space.listview(w_seq)
            self.seq = [
                convert_to_array(space, w_elem)
                if not space.is_none(w_elem) else None
                for w_elem in w_seq_as_list
            ]
        else:
            self.seq = [convert_to_array(space, w_seq)]
        if order == NPY.ANYORDER:
            # 'A' means "'F' order if all the arrays are Fortran contiguous,
            #            'C' order otherwise"
            order = NPY.CORDER
            for s in self.seq:
                if s and not (s.get_flags() & NPY.ARRAY_F_CONTIGUOUS):
                    break
                else:
                    order = NPY.FORTRANORDER
        elif order == NPY.KEEPORDER:
            # 'K' means "as close to the order the array elements appear in
            #     memory as possible", so match self.order to seq.order
            order = NPY.CORDER
            for s in self.seq:
                if s and not (s.get_order() == NPY.FORTRANORDER):
                    break
                else:
                    order = NPY.FORTRANORDER
        self.order = order
        parse_func_flags(space, self, w_flags)
        self.op_flags = parse_op_arg(space, 'op_flags', w_op_flags,
                                     len(self.seq), parse_op_flag)
        # handle w_op_axes
        oa_ndim = -1
        if not space.is_none(w_op_axes):
            oa_ndim = self.set_op_axes(space, w_op_axes)
        self.ndim = calculate_ndim(self.seq, oa_ndim)

        # handle w_op_dtypes part 1: creating self.dtypes list from input
        if not space.is_none(w_op_dtypes):
            w_seq_as_list = space.listview(w_op_dtypes)
            self.dtypes = [
                decode_w_dtype(space, w_elem) for w_elem in w_seq_as_list
            ]
            if len(self.dtypes) != len(self.seq):
                raise oefmt(
                    space.w_ValueError,
                    "op_dtypes must be a tuple/list matching the number of ops"
                )
        else:
            self.dtypes = []

        # handle None or writable operands, calculate my shape
        outargs = [
            i for i in range(len(self.seq))
            if self.seq[i] is None or self.op_flags[i].rw == 'w'
        ]
        if len(outargs) > 0:
            out_shape = shape_agreement_multiple(
                space, [self.seq[i] for i in outargs])
        else:
            out_shape = None
        if space.isinstance_w(w_itershape, space.w_tuple) or \
           space.isinstance_w(w_itershape, space.w_list):
            self.shape = [space.int_w(i) for i in space.listview(w_itershape)]
        else:
            self.shape = shape_agreement_multiple(space,
                                                  self.seq,
                                                  shape=out_shape)
        if len(outargs) > 0:
            # Make None operands writeonly and flagged for allocation
            if len(self.dtypes) > 0:
                out_dtype = self.dtypes[outargs[0]]
            else:
                out_dtype = None
                for i in range(len(self.seq)):
                    if self.seq[i] is None:
                        self.op_flags[i].allocate = True
                        continue
                    if self.op_flags[i].rw == 'w':
                        continue
                    out_dtype = find_binop_result_dtype(
                        space, self.seq[i].get_dtype(), out_dtype)
            for i in outargs:
                if self.seq[i] is None:
                    # XXX can we postpone allocation to later?
                    self.seq[i] = W_NDimArray.from_shape(
                        space, self.shape, out_dtype)
                else:
                    if not self.op_flags[i].broadcast:
                        # Raises if output cannot be broadcast
                        try:
                            shape_agreement(space, self.shape, self.seq[i],
                                            False)
                        except OperationError as e:
                            raise oefmt(
                                space.w_ValueError, "non-broadcastable"
                                " output operand with shape %s doesn't match "
                                "the broadcast shape %s",
                                str(self.seq[i].get_shape()), str(self.shape))

        if self.tracked_index != "":
            order = self.order
            if order == NPY.KEEPORDER:
                order = self.seq[0].implementation.order
            if self.tracked_index == "multi":
                backward = False
            else:
                backward = ((order == NPY.CORDER and self.tracked_index != 'C')
                            or (order == NPY.FORTRANORDER
                                and self.tracked_index != 'F'))
            self.index_iter = IndexIterator(self.shape, backward=backward)

        # handle w_op_dtypes part 2: copy where needed if possible
        if len(self.dtypes) > 0:
            for i in range(len(self.seq)):
                self_d = self.dtypes[i]
                seq_d = self.seq[i].get_dtype()
                if not self_d:
                    self.dtypes[i] = seq_d
                elif self_d != seq_d:
                    impl = self.seq[i].implementation
                    if self.buffered or 'r' in self.op_flags[i].tmp_copy:
                        if not can_cast_array(space, self.seq[i], self_d,
                                              self.casting):
                            raise oefmt(
                                space.w_TypeError, "Iterator operand %d"
                                " dtype could not be cast from %s to %s"
                                " according to the rule '%s'", i,
                                space.str_w(seq_d.descr_repr(space)),
                                space.str_w(self_d.descr_repr(space)),
                                self.casting)
                        order = support.get_order_as_CF(impl.order, self.order)
                        new_impl = impl.astype(space, self_d,
                                               order).copy(space)
                        self.seq[i] = W_NDimArray(new_impl)
                    else:
                        raise oefmt(
                            space.w_TypeError, "Iterator "
                            "operand required copying or buffering, "
                            "but neither copying nor buffering was "
                            "enabled")
                    if 'w' in self.op_flags[i].rw:
                        if not can_cast_type(space, self_d, seq_d,
                                             self.casting):
                            raise oefmt(
                                space.w_TypeError, "Iterator"
                                " requested dtype could not be cast from "
                                " %s to %s, the operand %d dtype, accord"
                                "ing to the rule '%s'",
                                space.str_w(self_d.descr_repr(space)),
                                space.str_w(seq_d.descr_repr(space)), i,
                                self.casting)
        elif self.buffered and not (self.external_loop and len(self.seq) < 2):
            for i in range(len(self.seq)):
                if i not in outargs:
                    self.seq[i] = self.seq[i].descr_copy(space,
                                                         w_order=space.wrap(
                                                             self.order))
            self.dtypes = [s.get_dtype() for s in self.seq]
        else:
            #copy them from seq
            self.dtypes = [s.get_dtype() for s in self.seq]

        # create an iterator for each operand
        self.iters = []
        for i in range(len(self.seq)):
            it = self.get_iter(space, i)
            it.contiguous = False
            self.iters.append((it, it.reset()))

        if self.external_loop:
            coalesce_axes(self, space)
Beispiel #15
0
    def __init__(self, space, w_seq, w_flags, w_op_flags, w_op_dtypes,
                 w_casting, w_op_axes, w_itershape, buffersize=0, order='K'):
        from pypy.module.micronumpy.ufuncs import find_binop_result_dtype
        
        self.order = order
        self.external_loop = False
        self.buffered = False
        self.tracked_index = ''
        self.common_dtype = False
        self.delay_bufalloc = False
        self.grow_inner = False
        self.ranged = False
        self.refs_ok = False
        self.reduce_ok = False
        self.zerosize_ok = False
        self.index_iter = None
        self.done = False
        self.first_next = True
        self.op_axes = []
        # convert w_seq operands to a list of W_NDimArray
        if space.isinstance_w(w_seq, space.w_tuple) or \
           space.isinstance_w(w_seq, space.w_list):
            w_seq_as_list = space.listview(w_seq)
            self.seq = [convert_to_array(space, w_elem)
                        if not space.is_none(w_elem) else None
                        for w_elem in w_seq_as_list]
        else:
            self.seq = [convert_to_array(space, w_seq)]

        parse_func_flags(space, self, w_flags)
        self.op_flags = parse_op_arg(space, 'op_flags', w_op_flags,
                                     len(self.seq), parse_op_flag)
        # handle w_op_axes
        oa_ndim = -1
        if not space.is_none(w_op_axes):
            oa_ndim = self.set_op_axes(space, w_op_axes)
        self.ndim = calculate_ndim(self.seq, oa_ndim)

        # handle w_op_dtypes part 1: creating self.dtypes list from input
        if not space.is_none(w_op_dtypes):
            w_seq_as_list = space.listview(w_op_dtypes)
            self.dtypes = [decode_w_dtype(space, w_elem) for w_elem in w_seq_as_list]
            if len(self.dtypes) != len(self.seq):
                raise oefmt(space.w_ValueError,
                    "op_dtypes must be a tuple/list matching the number of ops")
        else:
            self.dtypes = []

        # handle None or writable operands, calculate my shape
        outargs = [i for i in range(len(self.seq))
                   if self.seq[i] is None or self.op_flags[i].rw == 'w']
        if len(outargs) > 0:
            out_shape = shape_agreement_multiple(space, [self.seq[i] for i in outargs])
        else:
            out_shape = None
        if space.isinstance_w(w_itershape, space.w_tuple) or \
           space.isinstance_w(w_itershape, space.w_list):
            self.shape = [space.int_w(i) for i in space.listview(w_itershape)]
        else:
            self.shape = shape_agreement_multiple(space, self.seq,
                                                           shape=out_shape)
        if len(outargs) > 0:
            # Make None operands writeonly and flagged for allocation
            if len(self.dtypes) > 0:
                out_dtype = self.dtypes[outargs[0]]
            else:
                out_dtype = None
                for i in range(len(self.seq)):
                    if self.seq[i] is None:
                        self.op_flags[i].allocate = True
                        continue
                    if self.op_flags[i].rw == 'w':
                        continue
                    out_dtype = find_binop_result_dtype(
                        space, self.seq[i].get_dtype(), out_dtype)
            for i in outargs:
                if self.seq[i] is None:
                    # XXX can we postpone allocation to later?
                    self.seq[i] = W_NDimArray.from_shape(space, self.shape, out_dtype)
                else:
                    if not self.op_flags[i].broadcast:
                        # Raises if ooutput cannot be broadcast
                        shape_agreement(space, self.shape, self.seq[i], False)

        if self.tracked_index != "":
            if self.order == "K":
                self.order = self.seq[0].implementation.order
            if self.tracked_index == "multi":
                backward = False
            else:
                backward = self.order != self.tracked_index
            self.index_iter = IndexIterator(self.shape, backward=backward)

        # handle w_op_dtypes part 2: copy where needed if possible
        if len(self.dtypes) > 0:
            for i in range(len(self.seq)):
                selfd = self.dtypes[i]
                seq_d = self.seq[i].get_dtype()
                if not selfd:
                    self.dtypes[i] = seq_d
                elif selfd != seq_d:
                    if not 'r' in self.op_flags[i].tmp_copy:
                        raise oefmt(space.w_TypeError,
                                    "Iterator operand required copying or "
                                    "buffering for operand %d", i)
                    impl = self.seq[i].implementation
                    new_impl = impl.astype(space, selfd)
                    self.seq[i] = W_NDimArray(new_impl)
        else:
            #copy them from seq
            self.dtypes = [s.get_dtype() for s in self.seq]

        # create an iterator for each operand
        self.iters = []
        for i in range(len(self.seq)):
            it = get_iter(space, self.order, self.seq[i], self.shape,
                          self.dtypes[i], self.op_flags[i], self)
            it.contiguous = False
            self.iters.append((it, it.reset()))

        if self.external_loop:
            coalesce_axes(self, space)
    def __init__(self,
                 space,
                 w_seq,
                 w_flags,
                 w_op_flags,
                 w_op_dtypes,
                 w_casting,
                 w_op_axes,
                 w_itershape,
                 buffersize=0,
                 order='K'):
        self.order = order
        self.external_loop = False
        self.buffered = False
        self.tracked_index = ''
        self.common_dtype = False
        self.delay_bufalloc = False
        self.grow_inner = False
        self.ranged = False
        self.refs_ok = False
        self.reduce_ok = False
        self.zerosize_ok = False
        self.index_iter = None
        self.done = False
        self.first_next = True
        self.op_axes = []
        # convert w_seq operands to a list of W_NDimArray
        if space.isinstance_w(w_seq, space.w_tuple) or \
           space.isinstance_w(w_seq, space.w_list):
            w_seq_as_list = space.listview(w_seq)
            self.seq = [
                convert_to_array(space, w_elem)
                if not space.is_none(w_elem) else None
                for w_elem in w_seq_as_list
            ]
        else:
            self.seq = [convert_to_array(space, w_seq)]

        parse_func_flags(space, self, w_flags)
        self.op_flags = parse_op_arg(space, 'op_flags', w_op_flags,
                                     len(self.seq), parse_op_flag)
        # handle w_op_axes
        oa_ndim = -1
        if not space.is_none(w_op_axes):
            oa_ndim = self.set_op_axes(space, w_op_axes)
        self.ndim = calculate_ndim(self.seq, oa_ndim)

        # handle w_op_dtypes part 1: creating self.dtypes list from input
        if not space.is_none(w_op_dtypes):
            w_seq_as_list = space.listview(w_op_dtypes)
            self.dtypes = [
                decode_w_dtype(space, w_elem) for w_elem in w_seq_as_list
            ]
            if len(self.dtypes) != len(self.seq):
                raise oefmt(
                    space.w_ValueError,
                    "op_dtypes must be a tuple/list matching the number of ops"
                )
        else:
            self.dtypes = []

        # handle None or writable operands, calculate my shape
        outargs = [
            i for i in range(len(self.seq))
            if self.seq[i] is None or self.op_flags[i].rw == 'w'
        ]
        if len(outargs) > 0:
            out_shape = shape_agreement_multiple(
                space, [self.seq[i] for i in outargs])
        else:
            out_shape = None
        if space.isinstance_w(w_itershape, space.w_tuple) or \
           space.isinstance_w(w_itershape, space.w_list):
            self.shape = [space.int_w(i) for i in space.listview(w_itershape)]
        else:
            self.shape = shape_agreement_multiple(space,
                                                  self.seq,
                                                  shape=out_shape)
        if len(outargs) > 0:
            # Make None operands writeonly and flagged for allocation
            if len(self.dtypes) > 0:
                out_dtype = self.dtypes[outargs[0]]
            else:
                out_dtype = None
                for i in range(len(self.seq)):
                    if self.seq[i] is None:
                        self.op_flags[i].allocate = True
                        continue
                    if self.op_flags[i].rw == 'w':
                        continue
                    out_dtype = find_binop_result_dtype(
                        space, self.seq[i].get_dtype(), out_dtype)
            for i in outargs:
                if self.seq[i] is None:
                    # XXX can we postpone allocation to later?
                    self.seq[i] = W_NDimArray.from_shape(
                        space, self.shape, out_dtype)
                else:
                    if not self.op_flags[i].broadcast:
                        # Raises if ooutput cannot be broadcast
                        shape_agreement(space, self.shape, self.seq[i], False)

        if self.tracked_index != "":
            if self.order == "K":
                self.order = self.seq[0].implementation.order
            if self.tracked_index == "multi":
                backward = False
            else:
                backward = self.order != self.tracked_index
            self.index_iter = IndexIterator(self.shape, backward=backward)

        # handle w_op_dtypes part 2: copy where needed if possible
        if len(self.dtypes) > 0:
            for i in range(len(self.seq)):
                selfd = self.dtypes[i]
                seq_d = self.seq[i].get_dtype()
                if not selfd:
                    self.dtypes[i] = seq_d
                elif selfd != seq_d:
                    if not 'r' in self.op_flags[i].tmp_copy:
                        raise oefmt(
                            space.w_TypeError,
                            "Iterator operand required copying or "
                            "buffering for operand %d", i)
                    impl = self.seq[i].implementation
                    new_impl = impl.astype(space, selfd)
                    self.seq[i] = W_NDimArray(new_impl)
        else:
            #copy them from seq
            self.dtypes = [s.get_dtype() for s in self.seq]

        # create an iterator for each operand
        self.iters = []
        for i in range(len(self.seq)):
            it = get_iter(space, self.order, self.seq[i], self.shape,
                          self.dtypes[i], self.op_flags[i], self)
            it.contiguous = False
            self.iters.append((it, it.reset()))

        if self.external_loop:
            coalesce_axes(self, space)
Beispiel #17
0
    def __init__(
        self,
        space,
        w_seq,
        w_flags,
        w_op_flags,
        w_op_dtypes,
        w_casting,
        w_op_axes,
        w_itershape,
        buffersize=0,
        order=NPY.KEEPORDER,
        allow_backward=True,
    ):
        self.external_loop = False
        self.buffered = False
        self.tracked_index = ""
        self.common_dtype = False
        self.delay_bufalloc = False
        self.grow_inner = False
        self.ranged = False
        self.refs_ok = False
        self.reduce_ok = False
        self.zerosize_ok = False
        self.index_iter = None
        self.done = False
        self.first_next = True
        self.op_axes = []
        self.allow_backward = allow_backward
        if not space.is_w(w_casting, space.w_None):
            self.casting = space.str_w(w_casting)
        else:
            self.casting = "safe"
        # convert w_seq operands to a list of W_NDimArray
        if space.isinstance_w(w_seq, space.w_tuple) or space.isinstance_w(w_seq, space.w_list):
            w_seq_as_list = space.listview(w_seq)
            self.seq = [
                convert_to_array(space, w_elem) if not space.is_none(w_elem) else None for w_elem in w_seq_as_list
            ]
        else:
            self.seq = [convert_to_array(space, w_seq)]
        if order == NPY.ANYORDER:
            # 'A' means "'F' order if all the arrays are Fortran contiguous,
            #            'C' order otherwise"
            order = NPY.CORDER
            for s in self.seq:
                if s and not (s.get_flags() & NPY.ARRAY_F_CONTIGUOUS):
                    break
                else:
                    order = NPY.FORTRANORDER
        elif order == NPY.KEEPORDER:
            # 'K' means "as close to the order the array elements appear in
            #     memory as possible", so match self.order to seq.order
            order = NPY.CORDER
            for s in self.seq:
                if s and not (s.get_order() == NPY.FORTRANORDER):
                    break
                else:
                    order = NPY.FORTRANORDER
        self.order = order
        parse_func_flags(space, self, w_flags)
        self.op_flags = parse_op_arg(space, "op_flags", w_op_flags, len(self.seq), parse_op_flag)
        # handle w_op_axes
        oa_ndim = -1
        if not space.is_none(w_op_axes):
            oa_ndim = self.set_op_axes(space, w_op_axes)
        self.ndim = calculate_ndim(self.seq, oa_ndim)

        # handle w_op_dtypes part 1: creating self.dtypes list from input
        if not space.is_none(w_op_dtypes):
            w_seq_as_list = space.listview(w_op_dtypes)
            self.dtypes = [decode_w_dtype(space, w_elem) for w_elem in w_seq_as_list]
            if len(self.dtypes) != len(self.seq):
                raise oefmt(space.w_ValueError, "op_dtypes must be a tuple/list matching the number of ops")
        else:
            self.dtypes = []

        # handle None or writable operands, calculate my shape
        outargs = [i for i in range(len(self.seq)) if self.seq[i] is None or self.op_flags[i].rw == "w"]
        if len(outargs) > 0:
            out_shape = shape_agreement_multiple(space, [self.seq[i] for i in outargs])
        else:
            out_shape = None
        if space.isinstance_w(w_itershape, space.w_tuple) or space.isinstance_w(w_itershape, space.w_list):
            self.shape = [space.int_w(i) for i in space.listview(w_itershape)]
        else:
            self.shape = shape_agreement_multiple(space, self.seq, shape=out_shape)
        if len(outargs) > 0:
            # Make None operands writeonly and flagged for allocation
            if len(self.dtypes) > 0:
                out_dtype = self.dtypes[outargs[0]]
            else:
                out_dtype = None
                for i in range(len(self.seq)):
                    if self.seq[i] is None:
                        self.op_flags[i].allocate = True
                        continue
                    if self.op_flags[i].rw == "w":
                        continue
                    out_dtype = find_binop_result_dtype(space, self.seq[i].get_dtype(), out_dtype)
            for i in outargs:
                if self.seq[i] is None:
                    # XXX can we postpone allocation to later?
                    self.seq[i] = W_NDimArray.from_shape(space, self.shape, out_dtype)
                else:
                    if not self.op_flags[i].broadcast:
                        # Raises if output cannot be broadcast
                        try:
                            shape_agreement(space, self.shape, self.seq[i], False)
                        except OperationError as e:
                            raise oefmt(
                                space.w_ValueError,
                                "non-broadcastable"
                                " output operand with shape %s doesn't match "
                                "the broadcast shape %s",
                                str(self.seq[i].get_shape()),
                                str(self.shape),
                            )

        if self.tracked_index != "":
            order = self.order
            if order == NPY.KEEPORDER:
                order = self.seq[0].implementation.order
            if self.tracked_index == "multi":
                backward = False
            else:
                backward = (order == NPY.CORDER and self.tracked_index != "C") or (
                    order == NPY.FORTRANORDER and self.tracked_index != "F"
                )
            self.index_iter = IndexIterator(self.shape, backward=backward)

        # handle w_op_dtypes part 2: copy where needed if possible
        if len(self.dtypes) > 0:
            for i in range(len(self.seq)):
                self_d = self.dtypes[i]
                seq_d = self.seq[i].get_dtype()
                if not self_d:
                    self.dtypes[i] = seq_d
                elif self_d != seq_d:
                    impl = self.seq[i].implementation
                    if self.buffered or "r" in self.op_flags[i].tmp_copy:
                        if not can_cast_array(space, self.seq[i], self_d, self.casting):
                            raise oefmt(
                                space.w_TypeError,
                                "Iterator operand %d"
                                " dtype could not be cast from %s to %s"
                                " according to the rule '%s'",
                                i,
                                space.str_w(seq_d.descr_repr(space)),
                                space.str_w(self_d.descr_repr(space)),
                                self.casting,
                            )
                        order = support.get_order_as_CF(impl.order, self.order)
                        new_impl = impl.astype(space, self_d, order).copy(space)
                        self.seq[i] = W_NDimArray(new_impl)
                    else:
                        raise oefmt(
                            space.w_TypeError,
                            "Iterator "
                            "operand required copying or buffering, "
                            "but neither copying nor buffering was "
                            "enabled",
                        )
                    if "w" in self.op_flags[i].rw:
                        if not can_cast_type(space, self_d, seq_d, self.casting):
                            raise oefmt(
                                space.w_TypeError,
                                "Iterator"
                                " requested dtype could not be cast from "
                                " %s to %s, the operand %d dtype, accord"
                                "ing to the rule '%s'",
                                space.str_w(self_d.descr_repr(space)),
                                space.str_w(seq_d.descr_repr(space)),
                                i,
                                self.casting,
                            )
        elif self.buffered and not (self.external_loop and len(self.seq) < 2):
            for i in range(len(self.seq)):
                if i not in outargs:
                    self.seq[i] = self.seq[i].descr_copy(space, w_order=space.wrap(self.order))
            self.dtypes = [s.get_dtype() for s in self.seq]
        else:
            # copy them from seq
            self.dtypes = [s.get_dtype() for s in self.seq]

        # create an iterator for each operand
        self.iters = []
        for i in range(len(self.seq)):
            it = self.get_iter(space, i)
            it.contiguous = False
            self.iters.append((it, it.reset()))

        if self.external_loop:
            coalesce_axes(self, space)