Beispiel #1
0
def main():
    """
    """

    # parse the arguments
    parser = argparse.ArgumentParser(
        description='Entry to Pyrad processing framework')

    # keyword arguments
    parser.add_argument('--database',
                        type=str,
                        default='/store/msrad/radar/pyrad_products/',
                        help='base path to the radar data')

    parser.add_argument(
        '--datadirs',
        type=str,
        default=(
            'mals_sha_windmills_point_psr_filtered_WM1_20200304-20200311,'
            'mals_sha_windmills_point_psr_filtered_WM1_20200312-20200315,'
            'mals_sha_windmills_point_psr_filtered_WM1_20200316-20200320,'
            'mals_sha_windmills_point_psr_filtered_WM1_20200321-20200325'),
        help='directories containing data')

    parser.add_argument(
        '--datatypes',
        type=str,
        default='dBuZ,dBuZv,rcs_h,rcs_v,uPhiDPu,RhoHVu,ZDRu,Vu,Wu',
        help='Data types. Coma separated')

    parser.add_argument(
        '--orientations',
        type=str,
        default=
        '0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230,240,250,260,270,280,290,300,310,320,330,340,350',
        help='Orientation respect to radar')

    parser.add_argument('--span', type=float, default=10., help='Span')

    parser.add_argument('--vel_limit',
                        type=float,
                        default=0.,
                        help='Velocity limit')

    args = parser.parse_args()

    print("====== PYRAD windmill data processing started: %s" %
          datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"))
    atexit.register(_print_end_msg,
                    "====== PYRAD windmill data processing finished: ")

    datadirs = args.datadirs.split(',')
    datatypes = args.datatypes.split(',')

    orientations = np.asarray(args.orientations.split(','), dtype=float)
    speeds = [
        'speed_GT' + str(args.vel_limit), 'speed_LE' + str(args.vel_limit)
    ]

    scan_type = 'ppi'

    for ori in orientations:
        for speed in speeds:
            for datatype in datatypes:
                first_read = False
                for datadir in datadirs:
                    # Read data time series files
                    flist = glob.glob(args.database + datadir + '/' +
                                      datatype + '_TS/TS/' + datatype +
                                      '_span' + str(args.span) + '_ori' +
                                      str(ori) + '_' + speed + '_hist.csv')

                    if not flist:
                        continue

                    hist_aux, bin_edges_aux = read_histogram(flist[0])
                    if not first_read:
                        hist = hist_aux
                        bin_edges = bin_edges_aux
                        first_read = True
                        continue

                    hist += hist_aux

                if not first_read:
                    warn('No files for orientation ' + str(ori) + ' and ' +
                         speed)
                    continue

                # Histogram plots
                field_name = get_fieldname_pyart(datatype)
                field_dict = get_metadata(field_name)

                fname = (args.database + datatype + '_span' + str(args.span) +
                         '_ori' + str(ori) + '_' + speed + '_hist.png')

                titl = (datatype + ' span ' + str(args.span) + ' ori ' +
                        str(ori) + ' ' + speed)

                bin_centers = bin_edges[:-1] + (
                    (bin_edges[1] - bin_edges[0]) / 2.)
                fname = plot_histogram2(bin_centers,
                                        hist, [fname],
                                        labelx=get_colobar_label(
                                            field_dict, field_name),
                                        titl=titl)
                print('Plotted ' + ' '.join(fname))

                fname = (args.database + datatype + '_span' + str(args.span) +
                         '_ori' + str(ori) + '_' + speed + '_hist.csv')
                fname = write_histogram(bin_edges, hist, fname)
                print('Written ' + fname)
def main():
    """
    """

    # parse the arguments
    parser = argparse.ArgumentParser(
        description='Entry to Pyrad processing framework')

    # keyword arguments
    parser.add_argument('--database',
                        type=str,
                        default='/store/msrad/radar/pyrad_products/',
                        help='base path to the radar data')

    parser.add_argument(
        '--datadirs',
        type=str,
        default=(
            'mals_sha_windmills_point_psr_filtered_WM1_20200304-20200311,'
            'mals_sha_windmills_point_psr_filtered_WM1_20200312-20200315,'
            'mals_sha_windmills_point_psr_filtered_WM1_20200316-20200320,'
            'mals_sha_windmills_point_psr_filtered_WM1_20200321-20200325'),
        help='directories containing data')

    parser.add_argument(
        '--datatypes',
        type=str,
        default='dBuZ,dBuZv,rcs_h,rcs_v,ZDRu,RhoHVu,uPhiDPu,Vu,Wu',
        help='Data types. Coma separated')

    args = parser.parse_args()

    print("====== PYRAD windmill data processing started: %s" %
          datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"))
    atexit.register(_print_end_msg,
                    "====== PYRAD windmill data processing finished: ")

    datadirs = args.datadirs.split(',')
    datatypes = args.datatypes.split(',')

    # Read periods of processing
    for datatype in datatypes:
        first_read = False
        for datadir in datadirs:
            # Read data time series files
            flist = glob.glob(args.database + datadir + '/' + datatype +
                              '_TS/TS/ts_POINT_MEASUREMENT_hist_' + datatype +
                              '.csv')
            if not flist:
                continue

            hist_aux, bin_edges_aux = read_histogram(flist[0])
            if not first_read:
                hist = hist_aux
                bin_edges = bin_edges_aux
                first_read = True
                continue

            hist += hist_aux

        basepath = os.path.dirname(flist[0]) + '/'

        # Histogram plots
        field_name = get_fieldname_pyart(datatype)
        field_dict = get_metadata(field_name)

        fname = args.database + 'ts_POINT_MEASUREMENT_hist_' + datatype + '.png'

        bin_centers = bin_edges[:-1] + ((bin_edges[1] - bin_edges[0]) / 2.)
        fname = plot_histogram2(bin_centers,
                                hist, [fname],
                                labelx=get_colobar_label(
                                    field_dict, field_name),
                                titl=datatype)
        print('Plotted ' + ' '.join(fname))

        fname = args.database + 'ts_POINT_MEASUREMENT_hist_' + datatype + '.csv'
        fname = write_histogram(bin_edges, hist, fname)
        print('Written ' + fname)
Beispiel #3
0
def main():
    """
    """
    # basepath = '/data/pyrad_products/rad4alp_hydro_PHA/'
    basepath = '/store/msrad/radar/pyrad_products/rad4alp_hydro_PHA/data_analysis_min10sources/'

    print("====== Lightning post-processing started: %s" %
          datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"))
    atexit.register(_print_end_msg,
                    "====== Lightning post-processing finished: ")

    #    prefix = ['All', 'no_CG', 'CGt']
    #    dir = ['all_data/', 'no_CG/', 'CGt/']

    prefix = ['CGt', 'CGn', 'CGp']
    dir = ['CGt/', 'CGn/', 'CGp/']

    sources = ['allsources', 'firstsource']
    titles = ['Value at VHF source location', 'Value at flash origin location']
    datatypes = [
        'dBZc', 'entropy', 'hydro', 'hydro_prop', 'KDPc', 'nhydro', 'RhoHVc',
        'TEMP', 'ZDRc'
    ]
    labels = [
        'horizontal reflectivity [dBZ]', 'entropy [-]',
        'radar echo classification [-]', 'proportion of hydrometeors [%]',
        'specific differential phase [deg/km]',
        'Number of hydrometeor in radar gate',
        'copolar correlation coefficient [-]', 'temperature [deg Celsius]',
        'differential reflectivity [dB]'
    ]

    #    sources = ['', '_first_source']
    #    titles = ['Value at VHF source location', 'Value at flash origin location']
    #    datatypes = ['alt', 'dBm']
    #    labels = [
    #        'VHF source altitude [m MSL]', 'VHF source power [dBm]']

    for source, titl in zip(sources, titles):
        for datatype, labelx in zip(datatypes, labels):
            hist1, bin_edges1 = read_histogram(basepath + dir[0] + prefix[0] +
                                               '_' + source +
                                               '_ts_trajlightning_' +
                                               datatype + '.csv')
            hist2, bin_edges2 = read_histogram(basepath + dir[1] + prefix[1] +
                                               '_' + source +
                                               '_ts_trajlightning_' +
                                               datatype + '.csv')
            hist3, bin_edges3 = read_histogram(basepath + dir[2] + prefix[2] +
                                               '_' + source +
                                               '_ts_trajlightning_' +
                                               datatype + '.csv')

            #            hist1, bin_edges1 = read_histogram(
            #                basepath+dir[0]+prefix[0]+'_Santis_hist_'+datatype+source+'.csv')
            #            hist2, bin_edges2 = read_histogram(
            #                basepath+dir[1]+prefix[1]+'_Santis_hist_'+datatype+source+'.csv')
            #            hist3, bin_edges3 = read_histogram(
            #                basepath+dir[2]+prefix[2]+'_Santis_hist_'+datatype+source+'.csv')

            if (not np.array_equal(bin_edges1, bin_edges2)
                    or not np.array_equal(bin_edges1, bin_edges3)):
                warn('Bin edges should be identical to group histograms')
                continue

            if hist1 is None or hist2 is None or hist3 is None:
                warn('Dataset not available')
                continue

            invert_xaxis = False
            if datatype == 'TEMP':
                invert_xaxis = True

            bin_res = bin_edges1[1] - bin_edges1[0]
            bin_centers = bin_edges1[1:] - bin_res / 2.
            fname = basepath + 'group_Santis_CG_hist_' + source + '_' + datatype + '.png'

            fig, ax = plot_histogram2(bin_centers,
                                      hist1, [fname],
                                      labelx=labelx,
                                      titl=titl,
                                      alpha=0.25,
                                      save_fig=False,
                                      color='b',
                                      invert_xaxis=invert_xaxis)

            fig, ax = plot_histogram2(bin_centers,
                                      hist2, [fname],
                                      labelx=labelx,
                                      titl=titl,
                                      ax=ax,
                                      fig=fig,
                                      save_fig=False,
                                      color='g',
                                      alpha=0.25,
                                      invert_xaxis=invert_xaxis)

            fname_list = plot_histogram2(bin_centers,
                                         hist3, [fname],
                                         labelx=labelx,
                                         titl=titl,
                                         ax=ax,
                                         fig=fig,
                                         save_fig=True,
                                         color='r',
                                         alpha=0.25,
                                         invert_xaxis=invert_xaxis)

            # Total number of values
            n1 = np.ma.sum(hist1)
            n2 = np.ma.sum(hist2)
            n3 = np.ma.sum(hist3)

            print(n1)
            print(n2)
            print(n3)

            # Mode
            print(bin_centers[np.ma.argmax(hist1)])
            print(bin_centers[np.ma.argmax(hist2)])
            print(bin_centers[np.ma.argmax(hist3)])

            # Median
            freq1 = np.ma.cumsum(hist1) / n1
            freq2 = np.ma.cumsum(hist2) / n2
            freq3 = np.ma.cumsum(hist3) / n3

            ind1 = np.where(freq1 >= 0.5)[0][0]
            ind2 = np.where(freq2 >= 0.5)[0][0]
            ind3 = np.where(freq3 >= 0.5)[0][0]

            print(bin_centers[ind1])
            print(bin_centers[ind2])
            print(bin_centers[ind3])

            if datatype == 'hydro':
                print(hist1 / n1 * 100.)
                print(hist2 / n2 * 100.)
                print(hist3 / n3 * 100.)

            print('plotted ' + ''.join(fname_list))