Beispiel #1
0
def train_and_eval(trial: optuna.Trial, ex_dir: str, seed: [int, None]):
    """
    Objective function for the Optuna `Study` to maximize.

    .. note::
        Optuna expects only the `trial` argument, thus we use `functools.partial` to sneak in custom arguments.

    :param trial: Optuna Trial object for hyper-parameter optimization
    :param ex_dir: experiment's directory, i.e. the parent directory for all trials in this study
    :param seed: seed value for the random number generators, pass `None` for no seeding
    :return: objective function value
    """
    # Synchronize seeds between Optuna trials
    pyrado.set_seed(seed)

    # Environment
    env_hparams = dict(dt=1 / 100., max_steps=600)
    env = QQubeSim(**env_hparams)
    env = ActNormWrapper(env)

    # Policy
    policy_hparam = dict(
        shared_hidden_sizes=trial.suggest_categorical(
            'shared_hidden_sizes_policy',
            [[16, 16], [32, 32], [64, 64], [16, 16, 16], [32, 32, 32]]),
        shared_hidden_nonlin=fcn_from_str(
            trial.suggest_categorical('shared_hidden_nonlin_policy',
                                      ['to_tanh', 'to_relu'])),
    )
    policy = TwoHeadedFNNPolicy(spec=env.spec, **policy_hparam)

    # Critic
    q_fcn_hparam = dict(
        hidden_sizes=trial.suggest_categorical(
            'hidden_sizes_critic',
            [[16, 16], [32, 32], [64, 64], [16, 16, 16], [32, 32, 32]]),
        hidden_nonlin=fcn_from_str(
            trial.suggest_categorical('hidden_nonlin_critic',
                                      ['to_tanh', 'to_relu'])),
    )
    obsact_space = BoxSpace.cat([env.obs_space, env.act_space])
    q_fcn_1 = FNNPolicy(spec=EnvSpec(obsact_space, ValueFunctionSpace),
                        **q_fcn_hparam)
    q_fcn_2 = FNNPolicy(spec=EnvSpec(obsact_space, ValueFunctionSpace),
                        **q_fcn_hparam)

    # Algorithm
    algo_hparam = dict(
        num_sampler_envs=1,  # parallelize via optuna n_jobs
        max_iter=100 * env.max_steps,
        min_steps=trial.suggest_categorical(
            'min_steps_algo', [1]),  # , 10, env.max_steps, 10*env.max_steps
        memory_size=trial.suggest_loguniform('memory_size_algo',
                                             1e2 * env.max_steps,
                                             1e4 * env.max_steps),
        tau=trial.suggest_uniform('tau_algo', 0.99, 1.),
        alpha_init=trial.suggest_uniform('alpha_init_algo', 0.1, 0.9),
        learn_alpha=trial.suggest_categorical('learn_alpha_algo',
                                              [True, False]),
        standardize_rew=trial.suggest_categorical('standardize_rew_algo',
                                                  [False]),
        gamma=trial.suggest_uniform('gamma_algo', 0.99, 1.),
        target_update_intvl=trial.suggest_categorical(
            'target_update_intvl_algo', [1, 5]),
        num_batch_updates=trial.suggest_categorical('num_batch_updates_algo',
                                                    [1, 5]),
        batch_size=trial.suggest_categorical('batch_size_algo',
                                             [128, 256, 512]),
        lr=trial.suggest_loguniform('lr_algo', 1e-5, 1e-3),
    )
    csv_logger = create_csv_step_logger(
        osp.join(ex_dir, f'trial_{trial.number}'))
    algo = SAC(ex_dir,
               env,
               policy,
               q_fcn_1,
               q_fcn_2,
               **algo_hparam,
               logger=csv_logger)

    # Train without saving the results
    algo.train(snapshot_mode='latest', seed=seed)

    # Evaluate
    min_rollouts = 1000
    sampler = ParallelSampler(
        env, policy, num_envs=1,
        min_rollouts=min_rollouts)  # parallelize via optuna n_jobs
    ros = sampler.sample()
    mean_ret = sum([r.undiscounted_return() for r in ros]) / min_rollouts

    return mean_ret
Beispiel #2
0
def train_and_eval(trial: optuna.Trial, study_dir: str, seed: int):
    """
    Objective function for the Optuna `Study` to maximize.

    .. note::
        Optuna expects only the `trial` argument, thus we use `functools.partial` to sneak in custom arguments.

    :param trial: Optuna Trial object for hyper-parameter optimization
    :param study_dir: the parent directory for all trials in this study
    :param seed: seed value for the random number generators, pass `None` for no seeding
    :return: objective function value
    """
    # Synchronize seeds between Optuna trials
    pyrado.set_seed(seed)

    # Environment
    env_hparams = dict(physicsEngine="Bullet", dt=1 / 100.0, max_steps=500)
    env = BallOnPlate2DSim(**env_hparams)
    env = ActNormWrapper(env)

    # Policy
    policy_hparam = dict(
        shared_hidden_sizes=trial.suggest_categorical(
            "shared_hidden_sizes_policy", [(16, 16), (32, 32), (64, 64),
                                           (16, 16, 16), (32, 32, 32)]),
        shared_hidden_nonlin=fcn_from_str(
            trial.suggest_categorical("shared_hidden_nonlin_policy",
                                      ["to_tanh", "to_relu"])),
    )
    policy = TwoHeadedFNNPolicy(spec=env.spec, **policy_hparam)

    # Critic
    qfcn_hparam = dict(
        hidden_sizes=trial.suggest_categorical("hidden_sizes_critic",
                                               [(16, 16), (32, 32), (64, 64),
                                                (16, 16, 16), (32, 32, 32)]),
        hidden_nonlin=fcn_from_str(
            trial.suggest_categorical("hidden_nonlin_critic",
                                      ["to_tanh", "to_relu"])),
    )
    obsact_space = BoxSpace.cat([env.obs_space, env.act_space])
    qfcn_1 = FNNPolicy(spec=EnvSpec(obsact_space, ValueFunctionSpace),
                       **qfcn_hparam)
    qfcn_2 = FNNPolicy(spec=EnvSpec(obsact_space, ValueFunctionSpace),
                       **qfcn_hparam)

    # Algorithm
    algo_hparam = dict(
        num_workers=1,  # parallelize via optuna n_jobs
        max_iter=100 * env.max_steps,
        min_steps=trial.suggest_categorical(
            "min_steps_algo", [1]),  # 10, env.max_steps, 10*env.max_steps
        memory_size=trial.suggest_loguniform("memory_size_algo",
                                             1e2 * env.max_steps,
                                             1e4 * env.max_steps),
        tau=trial.suggest_uniform("tau_algo", 0.99, 1.0),
        ent_coeff_init=trial.suggest_uniform("ent_coeff_init_algo", 0.1, 0.9),
        learn_ent_coeff=trial.suggest_categorical("learn_ent_coeff_algo",
                                                  [True, False]),
        standardize_rew=trial.suggest_categorical("standardize_rew_algo",
                                                  [False]),
        gamma=trial.suggest_uniform("gamma_algo", 0.99, 1.0),
        target_update_intvl=trial.suggest_categorical(
            "target_update_intvl_algo", [1, 5]),
        num_updates_per_step=trial.suggest_categorical(
            "num_batch_updates_algo", [1, 5]),
        batch_size=trial.suggest_categorical("batch_size_algo",
                                             [128, 256, 512]),
        lr=trial.suggest_loguniform("lr_algo", 1e-5, 1e-3),
    )
    csv_logger = create_csv_step_logger(
        osp.join(study_dir, f"trial_{trial.number}"))
    algo = SAC(study_dir,
               env,
               policy,
               qfcn_1,
               qfcn_2,
               **algo_hparam,
               logger=csv_logger)

    # Train without saving the results
    algo.train(snapshot_mode="latest", seed=seed)

    # Evaluate
    min_rollouts = 1000
    sampler = ParallelRolloutSampler(
        env, policy, num_workers=1,
        min_rollouts=min_rollouts)  # parallelize via optuna n_jobs
    ros = sampler.sample()
    mean_ret = sum([r.undiscounted_return() for r in ros]) / min_rollouts

    return mean_ret
Beispiel #3
0
    env = OneMassOscillatorSim(**env_hparams, task_args=dict(task_args=dict(state_des=np.array([0.5, 0]))))
    env = ActNormWrapper(env)

    # Policy
    policy_hparam = dict(
        shared_hidden_sizes=[32, 32],
        shared_hidden_nonlin=to.relu,
    )
    policy = TwoHeadedFNNPolicy(spec=env.spec, **policy_hparam)

    # Critic
    qfcn_hparam = dict(
        hidden_sizes=[32, 32],
        hidden_nonlin=to.relu
    )
    obsact_space = BoxSpace.cat([env.obs_space, env.act_space])
    qfcn_1 = FNNPolicy(spec=EnvSpec(obsact_space, ValueFunctionSpace), **qfcn_hparam)
    qfcn_2 = FNNPolicy(spec=EnvSpec(obsact_space, ValueFunctionSpace), **qfcn_hparam)

    # Algorithm
    algo_hparam = dict(
        max_iter=1000*env.max_steps,
        memory_size=100*env.max_steps,
        gamma=0.995,
        num_batch_updates=1,
        tau=0.995,
        ent_coeff_init=0.2,
        learn_ent_coeff=True,
        target_update_intvl=5,
        standardize_rew=False,
        min_steps=1,
Beispiel #4
0
def test_snapshots_notmeta(ex_dir, env: SimEnv, policy, algo_class,
                           algo_hparam):
    # Collect hyper-parameters, create algorithm, and train
    common_hparam = dict(max_iter=1, num_workers=1)
    common_hparam.update(algo_hparam)

    if issubclass(algo_class, ActorCritic):
        common_hparam.update(
            min_rollouts=3,
            critic=GAE(
                vfcn=FNNPolicy(spec=EnvSpec(env.obs_space, ValueFunctionSpace),
                               hidden_sizes=[16, 16],
                               hidden_nonlin=to.tanh)),
        )
    elif issubclass(algo_class, ParameterExploring):
        common_hparam.update(num_init_states_per_domain=1)
    elif issubclass(algo_class, (DQL, SAC)):
        common_hparam.update(memory_size=1000,
                             num_updates_per_step=2,
                             gamma=0.99,
                             min_rollouts=1)
        fnn_hparam = dict(hidden_sizes=[8, 8], hidden_nonlin=to.tanh)
        if issubclass(algo_class, DQL):
            # Override the setting
            env = BallOnBeamDiscSim(env.dt, env.max_steps)
            net = FNN(
                input_size=DiscreteActQValPolicy.get_qfcn_input_size(env.spec),
                output_size=DiscreteActQValPolicy.get_qfcn_output_size(),
                **fnn_hparam,
            )
            policy = DiscreteActQValPolicy(spec=env.spec, net=net)
        else:
            # Override the setting
            env = ActNormWrapper(env)
            policy = TwoHeadedGRUPolicy(env.spec,
                                        shared_hidden_size=8,
                                        shared_num_recurrent_layers=1)
            obsact_space = BoxSpace.cat([env.obs_space, env.act_space])
            common_hparam.update(qfcn_1=FNNPolicy(
                spec=EnvSpec(obsact_space, ValueFunctionSpace), **fnn_hparam))
            common_hparam.update(qfcn_2=FNNPolicy(
                spec=EnvSpec(obsact_space, ValueFunctionSpace), **fnn_hparam))
    else:
        raise NotImplementedError

    # Simulate training
    algo = algo_class(ex_dir, env, policy, **common_hparam)
    algo.policy.param_values += to.tensor([42.0])
    if isinstance(algo, ActorCritic):
        algo.critic.vfcn.param_values += to.tensor([42.0])

    # Save and load
    algo.save_snapshot(meta_info=None)
    algo_loaded = Algorithm.load_snapshot(load_dir=ex_dir)
    assert isinstance(algo_loaded, Algorithm)
    policy_loaded = algo_loaded.policy
    if isinstance(algo, ActorCritic):
        critic_loaded = algo_loaded.critic

    # Check
    assert all(algo.policy.param_values == policy_loaded.param_values)
    if isinstance(algo, ActorCritic):
        assert all(
            algo.critic.vfcn.param_values == critic_loaded.vfcn.param_values)

    # Load the experiment. Since we did not save any hyper-parameters, we ignore the errors when loading.
    env, policy, extra = load_experiment(ex_dir)
    assert isinstance(env, Env)
    assert isinstance(policy, Policy)
    assert isinstance(extra, dict)