def continuum(spec_in, spec_out, order=1, interactive=True): """ Continuum normalize spectra. Parameters ---------- spec_in: str; Name of the input spectra. spec_out: str; Name of the output spectra. order: int,str; The order of the polynomials or the number of the spline pieces. interactive: bool; Perform the fit interactively using the icfit commands? """ iraf.onedspec(_doprint=0) iraf.onedspec.continuum.unlearn() iraf.onedspec.continuum.input = spec_in iraf.onedspec.continuum.output = spec_out iraf.onedspec.continuum.order = str(order) if not interactive: iraf.onedspec.continuum.interactive = 'no' iraf.onedspec.continuum(mode='h')
def scopy(spec_in, spec_out, wstart, wend): """ Cut a spectrum on given wavelengths. Parameters ========== spec_in: str; Name of input spectrum. sepc_out: str; name of output spectrum. wstart: int; Beginning wavelength wend: int; Ending wavelength. """ iraf.onedspec(_doprint=0) iraf.scopy.w1 = wstart iraf.scopy.w2 = wend iraf.scopy.input = spec_in iraf.scopy.output = spec_out iraf.scopy(mode='h')
def standard(imlist_name, obj, obs): """ standard -- Add standard stars to sensitivity file standard input [records] output standard wfcdbstd.ms.fits (no) "sao" extinct = "/iraf/iraf/noao/lib/onedstds/iidscal/feige56.dat" caldir = "/iraf/iraf/noao/lib/onedstds/iidscal/" """ import glob import os, sys from pyraf import iraf iraf.noao() iraf.onedspec() imlist = glob.glob(imlist_name) imlist.sort() for i in range(len(imlist)): inim = imlist[i] iraf.standard( input=inim, output='s' + inim[:-5], extinct='/iraf/iraf/noao/lib/onedstds/iidscal/feige56.dat', observatory=obs, caldir="/iraf/iraf/noao/lib/onedstds/iidscal/", star_name=obj)
def run_scombine(listin, fn): namefil = [] namelist = open(listin, "r") for cols in (raw.strip().split() for raw in namelist): namefil.append(cols[0]) namelist.close() obs = [] count = -1 for i in range(len(namefil)): if namefil[i - 1][0:2] != namefil[i][0:2]: obs.append([]) count += 1 obs[count].append(namefil[i]) spec = [] for i in range(len(obs[0])): spec.append([]) for j in range(len(obs)): spec[i].append(obs[j][i]) iraf.noao() iraf.onedspec() for i in range(len(spec)): temp = open('temp_list', 'w') for j in range(len(spec[i])): temp.write(spec[i][j] + '\n') temp.close() if (spec[i][0][-6] == 'L') or (spec[i][0][-6] == 'U'): name_index = '0_' + spec[i][0][-6] else: name_index = spec[i][0][-6] + '_' + spec[i][0][-8] if len(fibnum) != 0: newname = ob_id[fibnum.index(name_index[0])] + '_' + name_index[-1] name_index = newname iraf.scombine('@temp_list', name_index, logfile='combine_log') fn.append(name_index)
def thar_cal(object_b_fn_ec, object_b_fn_ec_w, colour): # Import IRAF modules: iraf.noao(_doprint=0) iraf.onedspec(_doprint=0) # Check input file and reference extraction exist before proceeding: if os.path.isfile(object_b_fn_ec) == True: # Perform dispersion correction: iraf.dispcor(input=object_b_fn_ec, output=object_b_fn_ec_w) print ' ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print colour.capitalize() + ' object spectrum ' print '(' + str(object_b_fn_ec) + ')' print 'successfully wavelength calibrated in file ' print str(object_b_fn_ec_w) + '.' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print ' ' else: print ' ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Input frame ' print str(object_b_fn_ec) print 'does not exist. Exiting script. ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print ' ' print ' ' sys.exit()
def StandardTask(self, InputFile, OutputFile, FitsFolder, airmass_value, exptime_value): iraf.noao(_doprint=0) iraf.onedspec(_doprint=0) #From the fits file determine which is the star being treated StarName = self.StarnameFromFileName(InputFile) #Get the corresponding Calibration file CalibrationFile, Bandwidth, Bandsep = self.getCalibrationFile(StarName) #Incase no output name is given, we generate one with the provided "preffix" (The defaul format is a_std_wolf.dat) if OutputFile == None: OutputFile = 'a_std_' + StarName #Prepare dictionary with the configuration for the tasks Standard_conf_Comb = self.StandardAttributes(InputFile, OutputFile, CalibrationFile, FitsFolder, airmass_value, exptime_value, Bandwidth, Bandsep) #Display the equivalent command in IRAF Command = self.printIrafCommand('standard', Standard_conf_Comb) print '--- Using the command' print Command #Run the task iraf.onedspec.standard(**Standard_conf_Comb) return OutputFile
def apall_config( config_file, config_default='/Users/ando/andry/research/Make_software/saltrss/apall_conf.yml' ): config = yaml.safe_load(open(config_default)) custom_config = {} if os.path.exists(config_file): custom_config = yaml.safe_load(open(config_file)) config = config_merge(custom_config, config) sections = [ 'iraf.apall', ] iraf.noao(_doprint=0) iraf.twodspec(_doprint=0) iraf.onedspec(_doprint=0) iraf.apextract(_doprint=0) iraf.apextract.unlearn() iraf.apall.unlearn() iraf.apsum.unlearn() iraf.apextract.setParam('dispaxis', 1) for section_name in sections: params = config[section_name].items() for param_id in params: eval(section_name).setParam(param_id[0], param_id[1]) return config
def classifyfast(fitsfile, program='snid'): import floyds import re, os, sys, string from numpy import array, argsort from pyraf import iraf iraf.onedspec(_doprint=0) imgasci = re.sub('.fits', '.asci', fitsfile) floyds.util.delete(imgasci) iraf.onedspec.wspectext(fitsfile + '[*,1,1]', imgasci, header='no') if program == 'snid': print '\n######################\nclassify with snid\n' os.system('snid plot=0 iquery=0 inter=0 verbose=0 ' + imgasci) f = open(re.sub('.asci', '_snid.output', imgasci), 'r') ss = f.readlines() f.close() ss = ss[ss.index('### type fraction/redshift/age ###\n') + 2:ss.index( '### rlap-ordered template listings ###\n') - 2] bb = {} for i in ss: if string.split(i)[0] in ['Ia', 'Ia-norm', 'Ia-91T', 'Ia-91bg', 'Ia-csm', 'Ia-pec', 'Ib', 'Ib-norm', 'Ib-pec', 'IIb', 'Ic', 'Ic-norm', 'Ic-pec', 'Ic-broad', 'II', 'II-pec', 'IIn', 'IIP', 'IIL', 'NotSN', 'AGN', 'GAL', 'LBV']: bb[string.split(i)[0]] = {'all': string.split(i)[1:], 'frac': string.split(i)[2], 'phase': string.split(i)[6], 'red': string.split(i)[3]} _type, _frac, _phase = [], [], [] for ii in argsort(array([bb[i]['frac'] for i in bb.keys()], float))[::-1]: _type.append(bb.keys()[ii]) _frac.append(float(bb[bb.keys()[ii]]['frac'])) _phase.append(float(bb[bb.keys()[ii]]['phase'])) elif program == 'superfit': print 'classifiy with suprfit' elif program == 'gelato': print 'gelato' else: print 'warning: program not found' trigger = False if _type[0] not in ['AGN', 'NotSN', 'Gal']: if _phase[0] <= 0: trigger = True else: if 'pec' in _type[0]: trigger = True elif _type[0] in ['Ia-csm']: trigger = True print '\n#########################\n' print '\n Type % phase (most probable)' print '%7s\t%7s\t%7s' % (str(_type[0]), str(_frac[0]), str(_phase[0])) print '\n Type % phase (second most probable)' print '%7s\t%7s\t%7s' % (str(_type[1]), str(_frac[1]), str(_phase[1])) if trigger: print '\n##################\n INTERESTING SN !!!!\n ACTIVATE FOLLOW-UP WITH FULL LCOGT NETWORK !!!!\n\n' else: print '\n##################\n BORING SN ...... \n\n' # print '\n We report that a spectrum of '+fitsfile+' was obtained robotically on Aug XX with the FLOYDS spectrograph '+ # ' at "Faulkes Telescope XXX". The spectrum (range 320-1000 nm) shows it to be a SN Ia roughly one week before maximum light, and is consistent with the host galaxy (CGCG 425-26) redshift of z=0.027. Classification was performed via supernova spectrum cross correlation using SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).' return _type, _frac, _phase
def spectraresolution3(img0, ww=25): import pyfits import os, string, re, sys import lickshane from numpy import arange, mean, compress, array, median from numpy import interp as ninterp from pyraf import iraf iraf.onedspec(_doprint=0) img = re.sub('arc_', '', img0) data, hdr = pyfits.getdata(img0, 0, header=True) crvals = lickshane.util.readkey3(hdr, 'CRVAL1') cds = lickshane.util.readkey3(hdr, 'CD1_1') xx = arange(len(data)) yy = data aa = crvals + (xx) * cds maxtab, mintab = lickshane.util.peakdet(yy, median(yy) * 10) if len(maxtab) <= 0: maxtab, mintab = lickshane.util.peakdet(yy, median(yy)) if len(maxtab) <= 0: lines = [] else: lines0, b = zip(*maxtab) lines = crvals + (array(lines0)) * cds if len(lines) > 0: lines = compress((aa[0] < array(lines)) & (array(lines) < aa[-1]), array(lines)) cursor = '' yym = ninterp(lines - ww, aa, yy) yyp = ninterp(lines + ww, aa, yy) for i in range(0, len(lines)): cursor = cursor + str(lines[i] - ww) + ' ' + str( yym[i]) + ' 1 k\n' cursor = cursor + str(lines[i] + ww) + ' ' + str( yyp[i]) + ' 1 k\n' cursor = cursor + str(lines[i] + ww) + ' ' + str(yyp[i]) + ' 1 q\n' ff = open('_cursor', 'w') ff.write(cursor) ff.close() from pyraf import iraf aaa = iraf.noao.onedspec.bplot(img0, cursor='_cursor', spec2='', new_ima='', overwri='yes', Stdout=1) fw = [] for i in aaa[1:]: fw.append(float(string.split(string.split(i, '=')[-1], 'k')[0])) lickshane.util.delete('_cursor') res = (aa[0] + ((aa[-1] - aa[0]) / 2)) / mean(fw) else: res = 9999 return res
def normalize(fn): iraf.noao() iraf.onedspec() for i in range(len(fn)): if fn[i][-1] == 'L': nord = '10' else: nord = '7' iraf.continuum(fn[i], fn[i], order=nord, ask='no', logfile='norm_log')
def spectraresolution2(img0, ww=25): import pyfits import os, string, re, sys import floyds from numpy import arange, mean, compress, array from numpy import interp as ninterp from pyraf import iraf iraf.onedspec(_doprint=0) id = 'database/id' + re.sub('.fits', '', img0) img = re.sub('arc_', '', img0) data, hdr = pyfits.getdata(img0, 0, header=True) crvals = floyds.util.readkey3(hdr, 'CRVAL1') cds = floyds.util.readkey3(hdr, 'CD1_1') xx = arange(len(data)) yy = data aa = crvals + (xx) * cds # read identified lines from id file f = open(id, 'r') ss = f.readlines() f.close() indices = [i for i, x in enumerate(ss) if "begin" in x] if len(indices) <= 1: dd = ss[indices[0]:len(ss)] else: dd = ss[indices[0]:indices[1]] # dd=ss[indices[-1]:len(ss)] start = [i for i, x in enumerate(dd) if "features" in x][0] + 1 stop = [i for i, x in enumerate(dd) if "function" in x][0] ff = dd[start:stop] lines = [] if len(ff) > 0: for i in ff: lines.append(float(string.split(i)[2])) print lines lines = compress((aa[0] < array(lines)) & (array(lines) < aa[-1]), array(lines)) cursor = '' yym = ninterp(lines - ww, aa, yy) yyp = ninterp(lines + ww, aa, yy) for i in range(0, len(lines)): cursor = cursor + str(lines[i] - ww) + ' ' + str(yym[i]) + ' 1 k\n' cursor = cursor + str(lines[i] + ww) + ' ' + str(yyp[i]) + ' 1 k\n' cursor = cursor + str(lines[i] + ww) + ' ' + str(yyp[i]) + ' 1 q\n' ff = open('_cursor', 'w') ff.write(cursor) ff.close() from pyraf import iraf aaa = iraf.noao.onedspec.bplot(img0, cursor='_cursor', spec2='', new_ima='', overwri='yes', Stdout=1) fw = [] for i in aaa[1:]: fw.append(float(string.split(string.split(i, '=')[-1], 'k')[0])) floyds.util.delete('_cursor') res = (aa[0] + ((aa[-1] - aa[0]) / 2)) / mean(fw) else: res = 9999 return res
def spectraresolution2(img0, ww=25): from astropy.io import fits import os, string, re, sys import floyds from numpy import arange, mean, compress, array from numpy import interp as ninterp from pyraf import iraf iraf.onedspec(_doprint=0) id = 'database/id' + re.sub('.fits', '', img0) img = re.sub('arc_', '', img0) data, hdr = fits.getdata(img0, 0, header=True) crvals = floyds.util.readkey3(hdr, 'CRVAL1') cds = floyds.util.readkey3(hdr, 'CD1_1') xx = arange(len(data)) yy = data aa = crvals + (xx) * cds # read identified lines from id file f = open(id, 'r') ss = f.readlines() f.close() indices = [i for i, x in enumerate(ss) if "begin" in x] if len(indices) <= 1: dd = ss[indices[0]:len(ss)] else: dd = ss[indices[0]:indices[1]] # dd=ss[indices[-1]:len(ss)] start = [i for i, x in enumerate(dd) if "features" in x][0] + 1 stop = [i for i, x in enumerate(dd) if "function" in x][0] ff = dd[start:stop] lines = [] if len(ff) > 0: for i in ff: lines.append(float(string.split(i)[2])) print lines lines = compress((aa[0] < array(lines)) & (array(lines) < aa[-1]), array(lines)) cursor = '' yym = ninterp(lines - ww, aa, yy) yyp = ninterp(lines + ww, aa, yy) for i in range(0, len(lines)): cursor = cursor + str(lines[i] - ww) + ' ' + str(yym[i]) + ' 1 k\n' cursor = cursor + str(lines[i] + ww) + ' ' + str(yyp[i]) + ' 1 k\n' cursor = cursor + str(lines[i] + ww) + ' ' + str(yyp[i]) + ' 1 q\n' ff = open('_cursor', 'w') ff.write(cursor) ff.close() from pyraf import iraf aaa = iraf.noao.onedspec.bplot(img0, cursor='_cursor', spec2='', new_ima='', overwri='yes', Stdout=1) fw = [] for i in aaa[1:]: fw.append(float(string.split(string.split(i, '=')[-1], 'k')[0])) floyds.util.delete('_cursor') res = (aa[0] + ((aa[-1] - aa[0]) / 2)) / mean(fw) else: res = 9999 return res
def normalize(setup, filelist): iraf.noao() iraf.onedspec() for i in (filelist): name = setup + '/' + i iraf.continuum(name, name, order=1, ask='no', logfile=setup + '/norm_log')
def standard_sens(infile, caldir=')_.caldir', noext=False, overwrite=False): print('\n#############################') print('Deriving sensitivity funciton') # Not to display items in IRAF packages sys.stdout = open('/dev/null', 'w') iraf.noao() iraf.onedspec() sys.stdout = sys.__stdout__ # Back to the stadard output basename = fits.getval(infile, 'FRAMEID') std = basename + '.std' if noext: extinction = '' else: extinction = fi.filibdir + 'mkoextinct.dat' if os.path.isfile(std) and not overwrite: print('\t The output file of IRAF STANDARD '+\ 'task already exits. '+std) print('\t STANDARD is skipped.') else: if overwrite: print('Removing ' + std) try: os.remove(std) except: pass iraf.standard(infile, std, extinction=extinction,\ caldir=caldir, beam_sw='no', aperture='') print('Output file of IRAF STANDARD task: ' + std) sens = basename + '.sens.fits' if os.path.isfile(sens) and not overwrite: print('\t The output file of IRAF SENSFUNC task already exits. ' + sens) print('\t SENSFUNC is skipped.') else: if overwrite: print('Removing ' + sens) try: os.remove(sens) except: pass iraf.sensfunc(std, sens, aperture='', ignoreaps='yes',\ extinction=extinction,\ logfile='sensfunc.log') print('Output file of IRAF SENSFUNC task: ' + sens) return sens, True
def wavelength_calibration(targetdir): """ Does wavelength calibration. Writes every fit to database so make sure it's using the correct one. This needs to be run in object directory for database """ print 'Target directory is ' + targetdir print 'Doing wavelength calibration...' if os.getcwd() != targetdir: print 'Warning: current working directory must be target directory!' return None iraf.noao(_doprint=0) iraf.onedspec(_doprint=0) iraf.unlearn('identify') iraf.identify.setParam('images','aimcomb.fits') iraf.identify.setParam('coordli','/home/lc585/Dropbox/IoA/WHT_Proposal_2015a/argon+xenon.dat') iraf.identify.setParam('niterat',1) iraf.identify.setParam('function','spline3') iraf.identify.setParam('order',3) iraf.identify.setParam('zwidth',200.0) # Zoom graph width in user units iraf.identify.setParam('database','database') iraf.identify() # Update fits header print '\n' '\n' '\n' print 'Updating fits header...' iraf.hedit.setParam('images','imcomb.ms.fits') iraf.hedit.setParam('fields','REFSPEC1') iraf.hedit.setParam('value','aimcomb.fits') # should be wavelength calibrated? iraf.hedit.setParam('add','yes') iraf.hedit.setParam('verify','yes') iraf.hedit.setParam('show','yes') iraf.hedit() return None
def thar_ref(object_b_fn_ec, wave_ref, colour): # Import IRAF modules: iraf.noao(_doprint=0) iraf.onedspec(_doprint=0) # iraf.echelle(_doprint=0) parList = "wavelength_calibration_refspectra.par" if os.path.isfile(object_b_fn_ec) == True: if os.path.isfile(wave_ref) == True: if os.path.isfile(parList) == True: # Assign reference spectra to input object spectra using IRAF task refspectra: iraf.refspectra.setParList(ParList="wavelength_calibration_refspectra.par") iraf.refspectra(input=object_b_fn_ec, references=wave_ref) print ' ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print colour.capitalize() + ' object spectrum ' print '(' + str(object_b_fn_ec) + ') ' print 'assigned to ' + str(colour) + ' reference spectrum ' print '(' + str(wave_ref) + ') successfully. ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print ' ' else: print ' ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Wavelength reference IRAF .par file ' print str(parList) print 'does not exist. Exiting script. ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print ' ' print ' ' sys.exit() else: print ' ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'ThAr reference frame ' print str(wave_ref) print 'does not exist. Exiting script. ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print ' ' print ' ' sys.exit() else: print ' ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Input frame ' print str(object_b_fn_ec) print 'does not exist. Exiting script. ' print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print ' ' print ' ' sys.exit()
def sensfunc(standards, obs): """ sensfunc -- Determine sensitivity and extinction functions sensfunc standards sensitivity """ import glob import os, sys from pyraf import iraf iraf.noao() iraf.onedspec() output_sens = "sens" iraf.sensfunc(standards=standards, sensitivity=output_sens, extinct='/iraf/iraf/noao/lib/onedstds/ctioextinct.dat', observatory=obs) iraf.splot(output_sens)
def spectraresolution3(img0, ww=25): import pyfits import os, string, re, sys import floyds from numpy import arange, mean, compress, array, median from numpy import interp as ninterp from pyraf import iraf iraf.onedspec(_doprint=0) img = re.sub('arc_', '', img0) data, hdr = pyfits.getdata(img0, 0, header=True) crvals = floyds.util.readkey3(hdr, 'CRVAL1') cds = floyds.util.readkey3(hdr, 'CD1_1') xx = arange(len(data)) yy = data aa = crvals + (xx) * cds maxtab, mintab = floyds.util.peakdet(yy, median(yy) * 10) if len(maxtab) <= 0: maxtab, mintab = floyds.util.peakdet(yy, median(yy)) if len(maxtab) <= 0: lines = [] else: lines0, b = zip(*maxtab) lines = crvals + (array(lines0)) * cds if len(lines) > 0: lines = compress((aa[0] < array(lines)) & (array(lines) < aa[-1]), array(lines)) cursor = '' yym = ninterp(lines - ww, aa, yy) yyp = ninterp(lines + ww, aa, yy) for i in range(0, len(lines)): cursor = cursor + str(lines[i] - ww) + ' ' + str(yym[i]) + ' 1 k\n' cursor = cursor + str(lines[i] + ww) + ' ' + str(yyp[i]) + ' 1 k\n' cursor = cursor + str(lines[i] + ww) + ' ' + str(yyp[i]) + ' 1 q\n' ff = open('_cursor', 'w') ff.write(cursor) ff.close() from pyraf import iraf aaa = iraf.noao.onedspec.bplot(img0, cursor='_cursor', spec2='', new_ima='', overwri='yes', Stdout=1) fw = [] for i in aaa[1:]: fw.append(float(string.split(string.split(i, '=')[-1], 'k')[0])) floyds.util.delete('_cursor') res = (aa[0] + ((aa[-1] - aa[0]) / 2)) / mean(fw) else: res = 9999 return res
def atmofile(imgstd, imgout=''): # print "LOGX:: Entering `atmofile` method/function in %(__file__)s" % # globals() from pyraf import iraf import os import ntt iraf.noao(_doprint=0) iraf.onedspec(_doprint=0) iraf.set(direc=ntt.__path__[0] + '/') _cursor = 'direc$standard/ident/cursor_sky_0' if not imgout: imgout = 'atmo_' + imgstd os.system('rm -rf ' + imgout) iraf.noao.onedspec.bplot(imgstd, cursor=_cursor, spec2=imgstd, new_ima=imgout, overwri='yes') return imgout
def get_wl_identy(filename, coordlistname): iraf.onedspec() print 'run get_wl_identy identify...' print 'the input file is ' + filename print 'implot %s' % filename iraf.implot(image = filename) print 'run identify...' iraf.identify(images = filename , section = 'middle line', database = 'database' , coordlist = coordlistname, units = '', nsum = 10 , match = -3.0, maxfeatures = 50, zwidth = 100.0 , ftype = 'emission', fwidth = 18.0, cradius = 5.0 , threshold = 0.0, minsep = 2.0, function = 'spline3' , order = 1, sample = '*', niterate = 0 , low_reject = 3.0, high_reject = 3.0, grow = 0.0 , autowrite = False, graphics = 'stdgraph', cursor = '' , crval = '', cdelt = '')
def inspect(self, event): # Pull up the current TDSS spectrum in IRAF SPLOT #### global TDSS_fiber_indices, TDSS_fiber_index global plate, mjd # load packages; splot is in the onedspec package, which is in noao. # the special keyword _doprint=0 turns off displaying the tasks # when loading a package. iraf.noao(_doprint=0) iraf.onedspec(_doprint=0) # set/view IRAF task parameter. #iraf.onedspec.splot.save_file = "splot_%s.log" % (root,) # call IRAF task, and specify some parameters. iraf.onedspec.splot('spPlate-'+str(plate)+'-'+str(mjd)+'.fits[0][*,'+str(TDSS_fiber_index+1)+']')
def run_scombine(listin, fn, setup): namefil = [] namelist = open(listin, "r") for cols in (raw.strip().split() for raw in namelist): namefil.append(cols[0]) namelist.close() obs = [] count = -1 for i in range(len(namefil)): if namefil[i - 1][namefil[i - 1].index('/') + 1:][0] != namefil[i][namefil[i].index('/') + 1:][0]: obs.append([]) count += 1 obs[count].append(namefil[i]) spec = [] for i in range(len(obs[0])): spec.append([]) for j in range(len(obs)): Flag = True try: val = obs[j][i] Flag = True except IndexError: Flag = False if Flag: spec[i].append(obs[j][i]) if len(spec[i]) != len(obs): spec.pop(i) iraf.noao() iraf.onedspec() for i in range(len(spec)): temp = open(setup + '/temp_list', 'w') for j in range(len(spec[i])): temp.write(spec[i][j] + '\n') temp.close() longn = spec[i][0] specname = longn[(longn.index('/') + 1):][(longn[(longn.index('/') + 1):]).index('/') + 1:] iraf.scombine('@' + setup + '/temp_list', setup + '/' + specname, logfile=setup + '/combine_log') fn.append(specname)
def atmofile(imgstd, imgout=''): from pyraf import iraf import os import ntt iraf.noao(_doprint=0, Stdout=0) iraf.onedspec(_doprint=0, Stdout=0) iraf.set(direc=ntt.__path__[0] + '/') _cursor = 'direc$standard/ident/cursor_sky_0' if not imgout: imgout = 'atmo_' + imgstd os.system('rm -rf ' + imgout) iraf.noao.onedspec.bplot(imgstd, cursor=_cursor, spec2=imgstd, new_ima=imgout, overwri='yes') return imgout
def calibrate(imlist_name, obs): """ calibrate -- Apply extinction corrections and flux calibrations calibrate input output [records] """ import glob import os, sys from pyraf import iraf iraf.noao() iraf.onedspec() imlist = glob.glob(imlist_name) imlist.sort() for i in range(len(imlist)): inim = imlist[i] #iraf.calibrate(input=inim , output='s'+inim, extinct='/iraf/iraf/noao/lib/onedstds/ctioextinct.dat', flux='yes', observatory=obs) iraf.calibrate(input=inim, output='s' + inim, extinct='yes', flux='yes', observatory=obs)
def test(directory='', fileTag=''): fluxFiles = sorted(glob.glob(directory+'/*_1_Flux.fits')) spectraCount = 0 # Load the necessary IRAF packages iraf.onedspec() for thisFile in fluxFiles: # Resulting file names will use the self-reported object name # (if any) and an index based on the alphabetical order of # the original ("HI.xxxxx...") filename. Individual CCD files # (ie: HI.xxxx..._[1,2,3]_Flux.fits") will be left separate. objName = SD.GetObjectName(thisFile).strip().replace(' ','_') starName = '{0}{1}_{2:02d}'.format(fileTag, objName, spectraCount) spectraCount += 1 # makee 'linearize' breaks a 2-d spectrum into it's component # orders, one order per file. makeeCall = kMakeeLinearCall + thisFile sub.call(makeeCall, shell=True) orderFiles = sorted(glob.glob(directory+'/*_Flux-??.fits')) for order in orderFiles: orderNo = int(order[-7:-5]) if starName == '': fileRoot = order.split('/')[-1] orderFileName = directory+fileRoot else: orderFileName = directory+'/{0}_{1:02d}.fits'.format(starName, orderNo) if orderNo>6: u.clearFile(order) else: os.system('mv {0} {1}'.format(order, orderFileName)) # Continuum the orders # if int(orderNo)<5: # iraf.continuum(input=order, output=orderFileName, functio='chebyshev', interac='no', order=5, low_rej=3.0, high_re=3.5, niterat=10) # u.clearFile(order) # contFileName = directory+'/aC_'+starName+'.fits' # ...and stack them back up. # iraf.onedspec.scopy(input=directory+'/temp_*', output=contFileName, format='multispec', renumber="yes") # filesToClean = glob.glob(directory+'/temp_*') # for fn in filesToClean: # u.clearFile(fn) return
def extract(packnam): obs = packnam[-6] pack = pyfits.open(packnam) table = pack[1].data head = pack[0].header setup = head['HIERARCH ESO INS EXP MODE'] fib = [] obj = [] valid_obj = [] for i in range(len(table)): fib.append(table[i][0]) obj.append(table[i][7]) iraf.noao() iraf.onedspec() os.makedirs(setup + '/' + obs) for k in range(len(fib)): if (obj[k] != 'CALSIM') and (obj[k][0:4] != 'Grid'): valid_obj.append(setup + '/' + obs + '/' + obj[k]) iraf.scopy(packnam + '[' + str(fib[k]) + ',*]', setup + '/' + obs + '/' + obj[k]) return valid_obj, setup
def wspectext(spec_in, ascii_out, header=False): """ Convert 1D image spectra to an ascii text spectra. Parameters ---------- spec_in: str; Name of spectrum to be converted. ascii_out: str; Name of output ascii file. header: bool; Set header on file if True. """ iraf.onedspec(_doprint=0) iraf.onedspec.wspectext.unlearn() if header: iraf.onedspec.wspectext.header = 'yes' iraf.onedspec.wspectext.input = spec_in iraf.onedspec.wspectext.output = ascii_out iraf.onedspec.wspectext(mode='h')
def sflip(imlist_name): """ 아크 이미지랑 사이언스 이미지랑 파장 방향이 다를때, 스펙트럼을 뒤집는다. 세로로 되어 있는 이미지는 뒤집히나마나이므로, 가로방향으로 나오는 1d spectrum을 뒤집으면 된다. sflip -- Flip data and/or dispersion coordinates in spectra sflip input output """ import glob import os, sys from pyraf import iraf iraf.noao() iraf.onedspec() imlist = glob.glob(imlist_name) imlist.sort() for i in range(len(imlist)): inim = imlist[i] print('Flip spectrum') iraf.sflip(input=inim, output='r' + inim, coord_flip='yes', data_flip='yes')
def scopy_flux(flux_sci, flux_scopy_fits, flux_scopy_range, flux_scopy_file): """ Combine (average) all spectra (according to bin) in the image for a given spectral range, calculate mean flux. This is used for 1 mag contours when plotting the velocity fields. INPUT: FLUX_SCI, FLUX_SCOPY_FITS, FLUX_SCOPY_RANGE OUTPUT: FLUX_SCOPY_FILE """ if os.path.exists(flux_scopy_file): print('File {} already exists'.format(flux_scopy_file)) return files_in_dir = glob.glob(flux_sci.format('*')) assert len(files_in_dir) > 0, 'No files match {}'.format(flux_sci.format('*')) from pyraf import iraf iraf.noao() iraf.onedspec() flux_scopy_fits_i_data_mean = [] for i in range(len(files_in_dir)): flux_sci_i = flux_sci.format(i) flux_scopy_fits_i = flux_scopy_fits.format(i) if not os.path.exists(flux_scopy_fits_i): iraf.scopy(flux_sci_i, flux_scopy_fits_i, w1=flux_scopy_range[0], w2=flux_scopy_range[1]) flux_scopy_fits_i_data = fits.getdata(flux_scopy_fits_i, 0) assert flux_scopy_fits_i_data.ndim != 0, "Scrop'd array is empty" flux_scopy_fits_i_data_mean.append(flux_scopy_fits_i_data.mean()) np.array(flux_scopy_fits_i_data_mean).tofile(flux_scopy_file, sep='\n')
def main(): # Parse input arguments usage = 'usage: %prog [options] targets' p = optparse.OptionParser(usage=usage, version='v'+VERSION) p.add_option('--debug', action='store_true', help='toggle debug messages') p.add_option('--verbose', '-v', action='store_true', help='toggle on verbose mode') p.add_option('--tlist', '-l', action='store', type='string', dest='tlist', help='Target list') (options, args) = p.parse_args() if options.debug: options.verbose = True print 'options: ', options print 'args: ', args (validTargets, invalidTarget) = getTargets(args, options.tlist) specdict = getSpectra(validTargets) onedspec() for target in validTargets: print target for spectrum in specdict[target]: onedspec.splot(spectrum)
def main(): description = "> Performs pre-reduction steps" usage = "%prog \t [option] \n Recommended syntax: %prog -i -c" parser = OptionParser(usage=usage, description=description, version="0.1") option, args = parser.parse_args() iraf.noao(_doprint=0) iraf.imred(_doprint=0) iraf.ccdred(_doprint=0) iraf.twodspec(_doprint=0) iraf.longslit(_doprint=0) iraf.onedspec(_doprint=0) iraf.specred(_doprint=0) iraf.ccdred.verbose = 'no' iraf.specred.verbose = 'no' iraf.ccdproc.darkcor = 'no' iraf.ccdproc.fixpix = 'no' iraf.ccdproc.flatcor = 'no' iraf.ccdproc.zerocor = 'no' iraf.ccdproc.ccdtype = '' iraf.longslit.mode = 'h' iraf.specred.mode = 'h' iraf.noao.mode = 'h' iraf.ccdred.instrument = "ccddb$kpno/camera.dat" mkarc = raw_input("Make arc? ([y]/n): ") mkflat = raw_input("Make flat? ([y]/n): ") if len(args) > 1: files = [] sys.argv.append('--help') option, args = parser.parse_args() sys.exit() elif len(args) == 1: files = util.readlist(args[0]) sys.exit() else: listfile = glob.glob('*.fits') files_science = [] files_arc = [] files_dflat = [] #print 'checking your files ...' for img in listfile: _type = '' hdr0 = util.readhdr(img) _type = util.readkey3(hdr0, 'object') if 'flat' in _type.lower(): files_dflat.append(img) elif 'arc' not in _type.lower() and 'arc' not in img.lower(): files_science.append(img) if mkarc != 'n': mkarc_b = raw_input( "List blue arc files to combine (.fits will be added): " ).split() mkarc_r = raw_input( "List red arc files to combine (.fits will be added): ").split( ) for arc in mkarc_b: files_arc.append(arc + '.fits') for arc in mkarc_r: files_arc.append(arc + '.fits') if mkarc != 'n': list_arc_b = [] list_arc_r = [] for arcs in files_arc: if instruments.blue_or_red(arcs)[0] == 'blue': list_arc_b.append(arcs) elif instruments.blue_or_red(arcs)[0] == 'red': list_arc_r.append(arcs) else: sys.exit() if mkflat != 'n': list_flat_b = [] list_flat_r = [] for dflats in files_dflat: if instruments.blue_or_red(dflats)[0] == 'blue': list_flat_b.append(dflats) elif instruments.blue_or_red(dflats)[0] == 'red': list_flat_r.append(dflats) else: sys.exit() # make pre_reduced if it doesn't exist if not os.path.isdir('pre_reduced/'): os.mkdir('pre_reduced/') # log the existing processed files (need to verify this works if pre_reduced is empty...) pfiles = [] new_files = [] for root, dirnames, filenames in os.walk('pre_reduced'): for file in filenames: if file.startswith('to'): pfiles.append(file) print(pfiles) # loop over each image in pre_reduced for img in listfile: hdr = util.readhdr(img) targ = util.readkey3(hdr, 'object') # if file is not not a processed file, run the overscan+trim code if 'to' + img not in pfiles: # if the file is a science file, grab the name for later if 'arc' not in targ.lower() and 'flat' not in targ.lower(): new_files.append(img) print('Adding data for: ' + targ) inst = instruments.blue_or_red(img)[1] iraf.specred.dispaxi = inst.get('dispaxis') iraf.longslit.dispaxi = inst.get('dispaxis') _biassec0 = inst.get('biassec') _trimsec0 = inst.get('trimsec') ###################################################################### # # JB: this chunk of code needs attention # It seems incredibly hacky for anything but Kast... # # overscan if not img.startswith('o') and inst.get('observatory') == 'lick': if os.path.isfile('pre_reduced/o' + img): os.remove('pre_reduced/o' + img) util.kastbias(img, 'pre_reduced/o' + img) elif not img.startswith('o') and inst.get('observatory') != 'lick': if os.path.isfile('pre_reduced/o' + img): os.remove('pre_reduced/o' + img) os.system('cp ' + img + ' ' + 'pre_reduced/' + img) # trim if not img.startswith('t') and inst.get('observatory') == 'lick': if os.path.isfile('pre_reduced/to' + img): os.remove('pre_reduced/to' + img) iraf.ccdproc('pre_reduced/o' + img, output='pre_reduced/to' + img, overscan='no', trim='yes', zerocor="no", flatcor="no", readaxi='line', trimsec=str(_trimsec0), Stdout=1) elif not img.startswith('t') and inst.get('observatory') != 'lick': if os.path.isfile('pre_reduced/to' + img): os.remove('pre_reduced/to' + img) iraf.ccdproc('pre_reduced/' + img, output='pre_reduced/to' + img, overscan='yes', trim='yes', zerocor="no", flatcor="no", readaxi='line', trimsec=str(_trimsec0), biassec=str(_biassec0), Stdout=1) # combine the arcs if mkarc != 'n': # blue arcs if len(list_arc_b) > 0: if len(list_arc_b) == 1: arc_blue = list_arc_b[0] os.system('cp ' + 'pre_reduced/to' + arc_blue + ' ' + 'pre_reduced/ARC_blue.fits') else: arc_str = '' for arc in list_arc_b: arc_str = arc_str + 'pre_reduced/to' + arc + ',' if os.path.isfile('pre_reduced/ARC_blue.fits'): os.remove('pre_reduced/ARC_blue.fits') iraf.imcombine(arc_str, output='pre_reduced/ARC_blue.fits') # red arcs if len(list_arc_r) > 0: if len(list_arc_r) == 1: arc_red = list_arc_r[0] os.system('cp ' + 'pre_reduced/to' + arc_red + ' ' + 'pre_reduced/ARC_red.fits') else: arc_str = '' for arc in list_arc_r: arc_str = arc_str + 'pre_reduced/to' + arc + ',' if os.path.isfile('pre_reduced/ARC_red.fits'): os.remove('pre_reduced/ARC_red.fits') iraf.imcombine(arc_str, output='pre_reduced/ARC_red.fits') # combine the flats if mkflat != 'n': inter = 'yes' # blue flats if len(list_flat_b) > 0: br, inst = instruments.blue_or_red(list_flat_b[0]) iraf.specred.dispaxi = inst.get('dispaxis') if len(list_flat_b) == 1: # Flat_blue = 'pre_reduced/to'+ list_flat_b[0] Flat_blue = list_flat_b[0] else: flat_str = '' for flat in list_flat_b: flat_str = flat_str + 'pre_reduced/to' + flat + ',' #subsets = 'no' if os.path.isfile('pre_reduced/toFlat_blue'): os.remove('pre_reduced/toFlat_blue') iraf.flatcombine(flat_str, output='pre_reduced/toFlat_blue', ccdtype='', rdnoise=3.7, subsets='no', process='no') Flat_blue = 'Flat_blue.fits' #What is the output here? Check for overwrite iraf.specred.response('pre_reduced/to' + Flat_blue, normaliz='pre_reduced/to' + Flat_blue, response='pre_reduced/RESP_blue', interac=inter, thresho='INDEF', sample='*', naverage=2, function='legendre', low_rej=3, high_rej=3, order=60, niterat=20, grow=0, graphic='stdgraph') # red flats if len(list_flat_r) > 0: br, inst = instruments.blue_or_red(list_flat_r[0]) iraf.specred.dispaxi = inst.get('dispaxis') if len(list_flat_r) == 1: # Flat_red = 'pre_reduced/to' + list_flat_r[0] Flat_red = list_flat_r[0] else: flat_str = '' for flat in list_flat_r: flat_str = flat_str + 'pre_reduced/to' + flat + ',' if os.path.isfile('pre_reduced/toFlat_red'): os.remove('pre_reduced/toFlat_red') iraf.flatcombine(flat_str, output='pre_reduced/toFlat_red', ccdtype='', rdnoise=3.8, subsets='yes', process='no') Flat_red = 'Flat_red.fits' #What is the output here? Check for overwrite iraf.specred.response('pre_reduced/to' + Flat_red, normaliz='pre_reduced/to' + Flat_red, response='pre_reduced/RESP_red', interac=inter, thresho='INDEF', sample='*', naverage=2, function='legendre', low_rej=3, high_rej=3, order=80, niterat=20, grow=0, graphic='stdgraph') # science files should have 't' in front now # this just gets the base name, to prefix assumed below if new_files is not None: files_science = new_files # get all the science objects for the night science_targets = [] for obj in files_science: hdr = util.readhdr(obj) _type = util.readkey3(hdr, 'object') science_targets.append(_type) # make a dir for each sci object science_targets = set(science_targets) for targ in science_targets: if not os.path.isdir('pre_reduced/' + targ + '/'): os.mkdir('pre_reduced/' + targ + '/') # copy the files into the obj dir for obj in files_science: hdr = util.readhdr(obj) targ = util.readkey3(hdr, 'object') if not obj.startswith('to'): os.system('cp ' + 'pre_reduced/to' + obj + ' ' + 'pre_reduced/' + targ + '/') else: os.system('cp ' + 'pre_reduced/' + obj + ' ' + 'pre_reduced/' + targ + '/') rawfiles = glob.glob('*.fits') ofiles = glob.glob('pre_reduced/o' + '*.fits') tfiles = glob.glob('pre_reduced/to' + '*.fits') # delete raw files from the pre_reduced dir # there shouldn't be any there though? # maybe if the overscan isn't implemented for that detector for img in rawfiles: util.delete('pre_reduced/' + img) # delete the ofiles from pre_reduced dir for img in ofiles: util.delete(img)
def reduce(imglist,files_arc, _cosmic, _interactive_extraction,_arc): import string import os import re import sys os.environ["PYRAF_BETA_STATUS"] = "1" try: from astropy.io import fits as pyfits except: import pyfits import numpy as np import util import instruments import combine_sides as cs import cosmics from pyraf import iraf dv = util.dvex() scal = np.pi / 180. if not _interactive_extraction: _interactive = False else: _interactive = True if not _arc: _arc_identify = False else: _arc_identify = True iraf.noao(_doprint=0) iraf.imred(_doprint=0) iraf.ccdred(_doprint=0) iraf.twodspec(_doprint=0) iraf.longslit(_doprint=0) iraf.onedspec(_doprint=0) iraf.specred(_doprint=0) iraf.disp(inlist='1', reference='1') toforget = ['ccdproc', 'imcopy', 'specred.apall', 'longslit.identify', 'longslit.reidentify', 'specred.standard', 'longslit.fitcoords', 'onedspec.wspectext'] for t in toforget: iraf.unlearn(t) iraf.ccdred.verbose = 'no' iraf.specred.verbose = 'no' iraf.ccdproc.darkcor = 'no' iraf.ccdproc.fixpix = 'no' iraf.ccdproc.flatcor = 'no' iraf.ccdproc.zerocor = 'no' iraf.ccdproc.ccdtype = '' iraf.longslit.mode = 'h' iraf.specred.mode = 'h' iraf.noao.mode = 'h' iraf.ccdred.instrument = "ccddb$kpno/camera.dat" list_arc_b = [] list_arc_r = [] for arcs in files_arc: hdr = util.readhdr(arcs) if util.readkey3(hdr, 'VERSION') == 'kastb': list_arc_b.append(arcs) elif util.readkey3(hdr, 'VERSION') == 'kastr': list_arc_r.append(arcs) else: print util.readkey3(hdr, 'VERSION') + 'not in database' sys.exit() asci_files = [] newlist = [[],[]] print '\n### images to reduce :',imglist #raise TypeError for img in imglist: if 'b' in img: newlist[0].append(img) elif 'r' in img: newlist[1].append(img) if len(newlist[1]) < 1: newlist = newlist[:-1] for imgs in newlist: hdr = util.readhdr(imgs[0]) if util.readkey3(hdr, 'VERSION') == 'kastb': inst = instruments.kast_blue elif util.readkey3(hdr, 'VERSION') == 'kastr': inst = instruments.kast_red else: print util.readkey3(hdr, 'VERSION') + 'not in database' sys.exit() iraf.specred.dispaxi = inst.get('dispaxis') iraf.longslit.dispaxi = inst.get('dispaxis') _gain = inst.get('gain') _ron = inst.get('read_noise') iraf.specred.apall.readnoi = _ron iraf.specred.apall.gain = _gain _object0 = util.readkey3(hdr, 'OBJECT') _date0 = util.readkey3(hdr, 'DATE-OBS') _biassec0 = inst.get('biassec') _trimsec0 = inst.get('trimsec') _object0 = re.sub(' ', '', _object0) _object0 = re.sub('/', '_', _object0) nameout0 = str(_object0) + '_' + inst.get('name') + '_' + str(_date0) nameout0 = util.name_duplicate(imgs[0], nameout0, '') timg = nameout0 print '\n### now processing :',timg,' for -> ',inst.get('name') if len(imgs) > 1: img_str = '' for i in imgs: img_str = img_str + i + ',' iraf.imcombine(img_str, output=timg) else: img = imgs[0] if os.path.isfile(timg): os.system('rm -rf ' + timg) iraf.imcopy(img, output=timg) zero_file = inst.get('archive_zero_file') os.system('cp ' + zero_file + ' .') zero_file = string.split(zero_file, '/')[-1] flat_file = inst.get('archive_flat_file') os.system('cp ' + flat_file + ' .') flat_file = string.split(flat_file, '/')[-1] iraf.ccdproc(timg, output='', overscan='yes', trim='yes', zerocor="no", flatcor="no", readaxi='line', trimsec=str(_trimsec0),biassec=str(_biassec0), Stdout=1) iraf.ccdproc(timg, output='', overscan='no', trim='no', zerocor="yes", flatcor="no", readaxi='line', zero=zero_file,order=3, Stdout=1) iraf.ccdproc(timg, output='', overscan='no', trim='no', zerocor="no", flatcor="yes", readaxi='line', flat=flat_file, Stdout=1) img = timg #raw_input("Press Enter to continue...") print '\n### starting cosmic removal' if _cosmic: array, header = cosmics.fromfits(img) c = cosmics.cosmicsimage(array, gain=inst.get('gain'), readnoise=inst.get('read_noise'), sigclip = 4.5, sigfrac = 0.5, objlim = 1.0) c.run(maxiter = 4) cosmics.tofits('cosmic_' + img, c.cleanarray, header) print '\n### cosmic removal finished' img='cosmic_' + img if inst.get('name') == 'kast_blue': arcfile = list_arc_b[0] elif inst.get('name') == 'kast_red': arcfile = list_arc_r[0] if not arcfile.endswith(".fits"): arcfile=arcfile+'.fits' if os.path.isfile(arcfile): util.delete('t' + arcfile) iraf.ccdproc(arcfile, output= 't' + arcfile, overscan='yes', trim='yes', zerocor="no", flatcor="no", readaxi='line', trimsec=str(_trimsec0), biassec=str(_biassec0), Stdout=1) arcfile = 't' + arcfile else: print '\n### warning no arcfile \n exit ' sys.exit() if not os.path.isdir('database/'): os.mkdir('database/') if _arc_identify: arc_ex=re.sub('.fits', '.ms.fits', arcfile) print '\n### arcfile : ',arcfile print '\n### arcfile extraction : ',arc_ex iraf.specred.apall(arcfile, output='', line = 'INDEF', nsum=10, interactive='no', extract='yes',find='yes', nfind=1 ,format='multispec', trace='no',back='no',recen='no') iraf.longslit.identify(images=arc_ex, section=inst.get('section'),coordli=inst.get('line_list'),function = 'spline3',order=3, mode='h') else: arcref = inst.get('archive_arc_extracted') arcrefid = inst.get('archive_arc_extracted_id') os.system('cp ' + arcref + ' .') arcref = string.split(arcref, '/')[-1] os.system('cp ' + arcrefid + ' ./database') arc_ex=re.sub('.fits', '.ms.fits', arcfile) print '\n### arcfile : ',arcfile print '\n### arcfile extraction : ',arc_ex print '\n### arc referenece : ',arcref iraf.specred.apall(arcfile, output=arc_ex, line = 'INDEF', nsum=10, interactive='no', extract='yes',find='yes', nfind=1 ,format='multispec', trace='no',back='no',recen='no') iraf.longslit.reidentify(referenc=arcref, images=arc_ex, interac='NO', section=inst.get('section'), coordli=inst.get('line_list'), shift='INDEF', search='INDEF', mode='h', verbose='YES', step=0,nsum=5, nlost=2, cradius=10, refit='yes',overrid='yes',newaps='no') #print '\n### checking sky lines ' #_skyfile = inst.get('sky_file') #shift = util.skyfrom2d(img, _skyfile,'True') #print '\n### I found a shift of : ',shift print '\n### extraction using apall' result = [] hdr_image = util.readhdr(img) _type=util.readkey3(hdr_image, 'object') if _type.startswith("arc") or _type.startswith("dflat") or _type.startswith("Dflat") or _type.startswith("Dbias") or _type.startswith("Bias"): print '\n### warning problem \n exit ' sys.exit() else: imgex = util.extractspectrum( img, dv, inst, _interactive, 'obj') print '\n### applying wavelength solution' iraf.disp(inlist=imgex, reference=arc_ex) sensfile = inst.get('archive_sens') os.system('cp ' + sensfile + ' .') sensfile = string.split(sensfile, '/')[-1] if sensfile: print '\n### sensitivity function : ',sensfile imgf = re.sub('.fits', '_f.fits', img) _extinction = inst.get('extinction_file') _observatory = inst.get('observatory') _exptime = util.readkey3(hdr, 'EXPTIME') _airmass = util.readkey3(hdr, 'AIRMASS') util.delete(imgf) dimgex='d'+imgex iraf.specred.calibrate(input=dimgex, output=imgf, sensiti=sensfile, extinct='yes', extinction=_extinction,flux='yes', ignorea='yes', airmass=_airmass, exptime=_exptime, fnu='no') imgout = imgf imgasci = re.sub('.fits', '.asci', imgout) errasci = re.sub('.fits', '_err.asci', imgout) util.delete(imgasci) iraf.onedspec.wspectext(imgout + '[*,1,1]', imgasci, header='no') iraf.onedspec.wspectext(imgout + '[*,1,4]', errasci, header='no') spec = np.transpose(np.genfromtxt(imgasci)) err = np.transpose(np.genfromtxt(errasci)) util.delete(errasci) final = np.transpose([spec[0], spec[1], err[1]]) np.savetxt(imgasci, final) result = result + [imgout, imgasci] result = result + [imgex] + [timg] asci_files.append(imgasci) if not os.path.isdir(_object0 + '/'): os.mkdir(_object0 + '/') for img in result: os.system('mv ' + img + ' ' + _object0 + '/') else: for img in result: os.system('mv ' + img + ' ' + _object0 + '/') if not _arc_identify: util.delete(arcref) util.delete(sensfile) util.delete(zero_file) util.delete(flat_file) util.delete(arc_ex) util.delete(arcfile) util.delete('logfile') util.delete(dimgex) util.delete('cosmic_*') print '\n### now i will merge ...' if len(asci_files) > 1: final = cs.combine_blue_red(asci_files[0], asci_files[1], _object0) print '\n### final result in folder ',_object0,' is ',_object0+'_merged.asci' return result
def combineARCSpectra(args): import sys import glob import os from pyraf import iraf from shutil import copyfile from operator import itemgetter import pandas as pd # Setup relavent IRAF tasks... iraf.image() iraf.imutil() iraf.immatch() iraf.onedspec() # Grab list of file names from argument list # and convert it into a python list... #fnameList = 'WDC0442-0536.0086b.ms.fits,WDC0442-0536.0087b.ms.fits,WDC0442-0536.0088b.ms.fits' fnameList = args.fileList fnameList = fnameList.split(',') # Clean up file name list to exclude any excess blank spaces... fileNameList = [] for fname in fnameList: fileName = fname.strip() fileNameList.append(fileName) # Start a new file name list, for the imsliced # files to be imcombined... newFileNameList = [] # Loop through the input file name list... for fileName in fileNameList: print fileName # Create an output file name... baseFileName = os.path.splitext(fileName)[0] + '.tmp' outputFileName = baseFileName + '.fits' # Delete the any temporary files called tempA00?.fits, # and then run imslice on fileName... iraf.imdel('tempA00?.fits') iraf.imslice(fileName, 'tempA', 2) # Delete the any temporary files called tempB00?.fits, # and then run imslice on tempA001.fits (an output # from the first imslice)... iraf.imdel('tempB00?.fits') iraf.imslice('tempA001.fits', 'tempB', 2) # Rename the output file tempB001.fits from the second # imslice procedure; tempB001.fits contains the 1D # version of the target spectrum. (The other file, # tempB002.fits, which we ignore, contains the 1D # version of the sky background spectrum.) os.rename('tempB001.fits', outputFileName) # Append the output file name to the new file name list... newFileNameList.append(outputFileName) # Clean up unneeded temporary files... iraf.imdel('tempA00?.fits') iraf.imdel('tempB00?.fits') # Print the list of file names that will be fed to imcombine... print newFileNameList # Here, we convert the python list into an IRAF list... inlist = '' for newFileName in newFileNameList: inlist = inlist + ',' + newFileName inlist = inlist[1:] print inlist # Run imcombine to create a median-combined spectrum # and its sigma image... medianFile = newFileNameList[0].split('.')[0] + '.median.b.ms.fits' sigmaFile = 'sigma-' + newFileNameList[0].split( '.')[0] + '.median.b.ms.fits' iraf.imdel(medianFile) iraf.imdel(sigmaFile) iraf.imcombine(inlist, medianFile, combine='median', scale='median', sigma=sigmaFile) # Create ASCII text file equivalents... medianFileTxt = newFileNameList[0].split('.')[0] + '.median.b.ms.txt' sigmaFileTxt = 'sigma-' + newFileNameList[0].split( '.')[0] + '.median.b.ms.txt' iraf.onedspec.wspectext(medianFile, medianFileTxt) iraf.onedspec.wspectext(sigmaFile, sigmaFileTxt) # Combine median and sigma text files... df1 = pd.read_csv(medianFileTxt, header=None, names=['wave', 'flux'], delim_whitespace=True) df2 = pd.read_csv(sigmaFileTxt, header=None, names=['wave', 'flux_err'], delim_whitespace=True) df12 = df1.merge(df2, on='wave') outputFile = newFileNameList[0].split('.')[0] + '.median.flm' df12.to_csv(outputFile, index=False, sep=' ') # Run imcombine to create a mean-combined spectrum # and its sigma image... meanFile = newFileNameList[0].split('.')[0] + '.mean.b.ms.fits' sigmaFile = 'sigma-' + newFileNameList[0].split('.')[0] + '.mean.b.ms.fits' iraf.imdel(meanFile) iraf.imdel(sigmaFile) iraf.imcombine(inlist, meanFile, combine='average', scale='median', sigma=sigmaFile) # Create ASCII text file equivalents... meanFileTxt = newFileNameList[0].split('.')[0] + '.mean.b.ms.txt' sigmaFileTxt = 'sigma-' + newFileNameList[0].split( '.')[0] + '.mean.b.ms.txt' iraf.onedspec.wspectext(meanFile, meanFileTxt) iraf.onedspec.wspectext(sigmaFile, sigmaFileTxt) # Combine mean and sigma text files... df1 = pd.read_csv(meanFileTxt, header=None, names=['wave', 'flux'], delim_whitespace=True) df2 = pd.read_csv(sigmaFileTxt, header=None, names=['wave', 'flux_err'], delim_whitespace=True) df12 = df1.merge(df2, on='wave') outputFile = newFileNameList[0].split('.')[0] + '.mean.flm' df12.to_csv(outputFile, index=False, sep=' ') return 0
def load_modules(): # Define a function to load all of the modules so that they don't' import # unless we need them global iraf from pyraf import iraf iraf.pysalt() iraf.saltspec() iraf.saltred() iraf.set(clobber='YES') global sys import sys global os import os global shutil import shutil global glob from glob import glob global pyfits import pyfits global np import numpy as np global lacosmicx import lacosmicx global interp from scipy import interp global signal from scipy import signal global ndimage from scipy import ndimage global interpolate from scipy import interpolate global WCS from astropy.wcs import WCS global optimize from scipy import optimize global ds9 import pyds9 as ds9 global GaussianProcess from sklearn.gaussian_process import GaussianProcess global pandas import pandas iraf.onedspec() iraf.twodspec() iraf.longslit() iraf.apextract() iraf.imutil() iraf.rvsao(motd='no')
lamplist = [os.path.basename(x) for x in glob.glob( dbpath + '/lamp_XL*fits')] linelists = 'linelists$fear.dat' elif teles == "LJT": print("Settings for LJT will be used.") lamplist = [os.path.basename(x) for x in glob.glob( dbpath + '/lamp_LJ*fits')] linelists = 'linelists$henear.dat' else: print("Error detected.") print('Possible lamp spectrum(a) for references:\n' + ", ".join(p for p in lamplist)) refspec = str( raw_input("Enter filename of the lamp spectrum you want to use: ")) refspec1 = refspec.strip('.fits') + '.fits' copy2(dbpath + '/' + refspec1, CWD) copy2(dbpath + '/id' + refspec.strip('.fits'), CWD + '/database') iraf.onedspec() iraf.onedspec.reidentify.unlearn() # iraf.onedspec.reidentify.fwidth = 10 iraf.onedspec.reidentify.coordli = linelists iraf.onedspec.reidentify(reference=refspec1, images='af*fits') iraf.onedspec.identify.unlearn() iraf.onedspec.identify.fwidth = 10 iraf.onedspec.identify.coordli = linelists iraf.onedspec.identify(images='af*fits') print('---DONE---')
# <codecell> flat # <codecell> #create flats with different aperture widths iraf.apall(input=flat, output='flat_1', referen=flat, format='multispec', interac='no', find='no', recenter='no', resize='yes', edit='no', trace='no', fittrac='no', extract='yes', extras='no', review='no', line=2000, lower=-1, upper=1, bkg='no', nsum=-10, ylevel="INDEF", llimit=-1, ulimit=1,Stdout="/dev/null") # iraf.apall(input='tmp/masterflat.fits', output='tmp/flat_2', referen='tmp/masterflat.fits', format='multispec', interac='no', find='no', recenter='no', resize='yes', edit='no', trace='no', fittrac='no', extract='yes', extras='no', review='no', line=2000, lower=-2, upper=2, bkg='no', nsum=-10, ylevel="INDEF", llimit=-2, ulimit=2,Stdout="/dev/null") # iraf.apall(input='tmp/masterflat.fits', output='tmp/flat_3', referen='tmp/masterflat.fits', format='multispec', interac='no', find='no', recenter='no', resize='yes', edit='no', trace='no', fittrac='no', extract='yes', extras='no', review='no', line=2000, lower=-3, upper=3, bkg='no', nsum=-10, ylevel="INDEF", llimit=-3, ulimit=3,Stdout="/dev/null") # <codecell> #normalize different flats iraf.noao(_doprint=0,Stdout="/dev/null") iraf.onedspec(_doprint=0,Stdout="/dev/null") iraf.continuum(input=flat, output='flat_1_norm', lines='*', bands='*', type='ratio', wavescale='no', interac='no', sample='1:4095', functio='spline3', order=13, low_rej=2, high_rej=2, niter=10,Stdout="/dev/null") # iraf.continuum(input='tmp/flat_2', output='tmp/flat_2_norm', lines='*', bands='*', type='ratio', wavescale='no', interac='no', sample='1:4095', functio='spline3', order=13, low_rej=2, high_rej=2, niter=10,Stdout="/dev/null") # iraf.continuum(input='tmp/flat_3', output='tmp/flat_3_norm', lines='*', bands='*', type='ratio', wavescale='no', interac='no', sample='1:4095', functio='spline3', order=13, low_rej=2, high_rej=2, niter=10,Stdout="/dev/null") # <codecell> #combine normalized flats # iraf.images(_doprint=0,Stdout="/dev/null") # iraf.imutil(_doprint=0,Stdout="/dev/null") # iraf.imarith(operand1='tmp/flat_1_norm', op='*', operand2=0.43, result='tmp/flat_1_norm2',Stdout="/dev/null") # iraf.imarith(operand1='tmp/flat_2_norm', op='*', operand2=0.41, result='tmp/flat_2_norm2',Stdout="/dev/null") # iraf.imarith(operand1='tmp/flat_3_norm', op='*', operand2=0.16, result='tmp/flat_3_norm2',Stdout="/dev/null") # <codecell>
os.chdir(folderroot) import numpy as np from astropy.io import fits from matplotlib import pyplot as plt import shutil import sys from pyraf import iraf iraf.noao(_doprint=0) iraf.imred(_doprint=0) iraf.ccdred(_doprint=0) iraf.twodspec(_doprint=0) iraf.longslit(_doprint=0) iraf.kpnoslit(_doprint=0) iraf.astutil(_doprint=0) iraf.onedspec(_doprint=0) iraf.twodspec.longslit.dispaxis = 2 #read object keywords for file in os.listdir(os.getcwd()): if file.endswith('.fits'): testfile = file hduo = fits.open(testfile) #name targets (science & standard) target = hduo[0].header['OBJECT'] #target2 = 'SP0644p375' #std = 'SP0305+261'
def efoscfastredu(imglist, _listsens, _listarc, _ext_trace, _dispersionline, _cosmic, _interactive): # print "LOGX:: Entering `efoscfastredu` method/function in %(__file__)s" # % globals() import string import os import re import sys os.environ["PYRAF_BETA_STATUS"] = "1" try: from astropy.io import fits as pyfits except: import pyfits from ntt.util import readhdr, readkey3 import ntt import numpy as np dv = ntt.dvex() scal = np.pi / 180. if not _interactive: _interactive = False _inter = 'NO' else: _inter = 'YES' from pyraf import iraf iraf.noao(_doprint=0) iraf.imred(_doprint=0) iraf.ccdred(_doprint=0) iraf.twodspec(_doprint=0) iraf.longslit(_doprint=0) iraf.onedspec(_doprint=0) iraf.specred(_doprint=0) toforget = ['ccdproc', 'imcopy', 'specred.apall', 'longslit.identify', 'longslit.reidentify', 'specred.standard', 'longslit.fitcoords', 'onedspec.wspectext'] for t in toforget: iraf.unlearn(t) iraf.ccdred.verbose = 'no' # not print steps iraf.specred.verbose = 'no' # not print steps iraf.ccdproc.darkcor = 'no' iraf.ccdproc.fixpix = 'no' iraf.ccdproc.flatcor = 'no' iraf.ccdproc.zerocor = 'no' iraf.ccdproc.ccdtype = '' _gain = ntt.util.readkey3(ntt.util.readhdr(imglist[0]), 'gain') _ron = ntt.util.readkey3(ntt.util.readhdr(imglist[0]), 'ron') iraf.specred.apall.readnoi = _ron iraf.specred.apall.gain = _gain iraf.specred.dispaxi = 2 iraf.longslit.dispaxi = 2 iraf.longslit.mode = 'h' iraf.specred.mode = 'h' iraf.noao.mode = 'h' iraf.ccdred.instrument = "ccddb$kpno/camera.dat" iraf.set(direc=ntt.__path__[0] + '/') for img in imglist: hdr = ntt.util.readhdr(img) _tech = ntt.util.readkey3(hdr, 'tech') if _tech != 'SPECTRUM': sys.exit('error: ' + str(img) + ' is not a spectrum ') print '\n#### image name = ' + img + '\n' _grism0 = readkey3(hdr, 'grism') _filter0 = readkey3(hdr, 'filter') _slit0 = readkey3(hdr, 'slit') _object0 = readkey3(hdr, 'object') _date0 = readkey3(hdr, 'date-night') setup = (_grism0, _filter0, _slit0) _biassec0 = '[3:1010,1026:1029]' if _grism0 == 'Gr16': _trimsec0 = '[100:950,1:950]' elif _grism0 == 'Gr13': if _filter0 == 'Free': _trimsec0 = '[100:950,1:1015]' elif _filter0 == 'GG495': _trimsec0 = '[100:950,208:1015]' elif _filter0 == 'OG530': _trimsec0 = '[100:950,300:1015]' elif _grism0 == 'Gr11': _trimsec0 = '[100:950,5:1015]' else: _trimsec0 = '[100:950,5:1015]' _object0 = re.sub(' ', '', _object0) _object0 = re.sub('/', '_', _object0) nameout0 = 't' + str(_object0) + '_' + str(_date0) for _set in setup: nameout0 = nameout0 + '_' + _set nameout0 = ntt.util.name_duplicate(img, nameout0, '') timg = nameout0 if os.path.isfile(timg): os.system('rm -rf ' + timg) iraf.imcopy(img, output=timg) iraf.ccdproc(timg, output='', overscan='no', trim='yes', zerocor="no", flatcor="no", readaxi='column', trimsec=str(_trimsec0), biassec=_biassec0, Stdout=1) img = timg if _listarc: arcfile = ntt.util.searcharc(img, _listarc)[0] else: arcfile = '' if not arcfile: arcfile = ntt.util.searcharc(img, '')[0] else: iraf.ccdproc(arcfile, output='t' + arcfile, overscan='no', trim='yes', zerocor="no", flatcor="no", readaxi='column', trimsec=str(_trimsec0), biassec=str(_biassec0), Stdout=1) arcfile = 't' + arcfile if _cosmic: # print cosmic rays rejection ntt.cosmics.lacos(img, output='', gain=_gain, readn=_ron, xorder=9, yorder=9, sigclip=4.5, sigfrac=0.5, objlim=1, verbose=True, interactive=False) print '\n### cosmic rays rejections ........ done ' if not arcfile: print '\n### warning no arcfile \n exit ' else: arcref = ntt.util.searcharc(img, '')[0] if arcfile[0] == '/': os.system('cp ' + arcfile + ' ' + string.split(arcfile, '/')[-1]) arcfile = string.split(arcfile, '/')[-1] arcref = string.split(arcref, '/')[-1] if arcref: os.system('cp ' + arcref + ' .') arcref = string.split(arcref, '/')[-1] if not os.path.isdir('database/'): os.mkdir('database/') if os.path.isfile(ntt.util.searcharc(img, '')[1] + '/database/id' + re.sub('.fits', '', arcref)): os.system('cp ' + ntt.util.searcharc(img, '')[1] + '/database/id' + re.sub('.fits', '', arcref) + ' database/') iraf.longslit.reidentify(referenc=arcref, images=arcfile, interac=_inter, section='column 10', coordli='direc$standard/ident/Lines_HgCdHeNeAr600.dat', overrid='yes', step=0, newaps='no', nsum=5, nlost=2, mode='h', verbose='no') else: iraf.longslit.identify(images=arcfile, section='column 10', coordli='direc$standard/ident/Lines_HgCdHeNeAr600.dat', nsum=10, fwidth=7, order=3, mode='h') iraf.longslit.reident(referenc=arcfile, images=arcfile, interac='NO', section='column 10', coordli='direc$standard/ident/Lines_HgCdHeNeAr600.dat', overrid='yes', step=10, newaps='yes', nsum=5, nlost=2, mode='h', verbose='no') qqq = iraf.longslit.fitcoords(images=re.sub('.fits', '', arcfile), fitname=re.sub('.fits', '', arcfile), interac='no', combine='yes', databas='database', function='legendre', yorder=4, logfile='logfile', plotfil='', mode='h') iraf.specred.transform(input=img, output=img, minput='', fitnames=re.sub('.fits', '', arcfile), databas='database', x1='INDEF', x2='INDEF', y1='INDEF', y2='INDEF', flux='yes', mode='h', logfile='logfile') # ###################### check wavelength calibration ############ _skyfile = ntt.__path__[ 0] + '/standard/ident/sky_' + setup[0] + '_' + setup[1] + '.fits' shift = ntt.efoscspec2Ddef.skyfrom2d(img, _skyfile) print '\n### check in wavelengh performed ...... spectrum shifted of ' + str(shift) + ' Angstrom \n' zro = pyfits.open(img)[0].header.get('CRVAL2') ntt.util.updateheader(img, 0, {'CRVAL2': [zro + int(shift), '']}) std, rastd, decstd, magstd = ntt.util.readstandard( 'standard_efosc_mab.txt') hdrt = readhdr(img) _ra = readkey3(hdrt, 'RA') _dec = readkey3(hdrt, 'DEC') _object = readkey3(hdrt, 'object') dd = np.arccos(np.sin(_dec * scal) * np.sin(decstd * scal) + np.cos(_dec * scal) * np.cos(decstd * scal) * np.cos((_ra - rastd) * scal)) * ((180 / np.pi) * 3600) if min(dd) < 100: _type = 'stdsens' ntt.util.updateheader( img, 0, {'stdname': [std[np.argmin(dd)], '']}) ntt.util.updateheader( img, 0, {'magstd': [float(magstd[np.argmin(dd)]), '']}) else: _type = 'obj' print '\n### EXTRACTION USING IRAF TASK APALL \n' result = [] if _type == 'obj': imgex = ntt.util.extractspectrum( img, dv, _ext_trace, _dispersionline, _interactive, _type) ntt.util.updateheader( imgex, 0, {'FILETYPE': [22107, 'extracted 1D spectrum ']}) ntt.util.updateheader(imgex, 0, { 'PRODCATG': ['SCIENCE.' + readkey3(readhdr(imgex), 'tech').upper(), 'Data product category']}) ntt.util.updateheader(imgex, 0, {'TRACE1': [img, '']}) result.append(imgex) if _listsens: sensfile = ntt.util.searchsens(img, _listsens)[0] else: sensfile = '' if not sensfile: sensfile = ntt.util.searchsens(img, '')[0] if sensfile: imgf = re.sub('.fits', '_f.fits', img) _extinctdir = 'direc$standard/extinction/' _extinction = 'extinction_lasilla.dat' _observatory = 'lasilla' _exptime = readkey3(hdrt, 'exptime') _airmass = readkey3(hdrt, 'airmass') ntt.util.delete(imgf) iraf.specred.calibrate(input=imgex, output=imgf, sensiti=sensfile, extinct='yes', flux='yes', ignorea='yes', extinction=_extinctdir + _extinction, observatory=_observatory, airmass=_airmass, exptime=_exptime, fnu='no') hedvec = {'SENSFUN': [string.split(sensfile, '/')[-1], 'sensitivity function'], 'FILETYPE': [22208, '1D wavelength and flux calibrated spectrum '], 'SNR': [ntt.util.StoN2(imgf, False), 'Average S/N ratio'], 'BUNIT': ['erg/cm2/s/Angstrom', 'Flux Calibration Units'], 'TRACE1': [imgex, '']} ntt.util.updateheader(imgf, 0, hedvec) imgout = imgf imgd = ntt.efoscspec1Ddef.fluxcalib2d(img, sensfile) ntt.util.updateheader( imgd, 0, {'FILETYPE': [22209, '2D wavelength and flux calibrated spectrum ']}) ntt.util.updateheader(imgd, 0, {'TRACE1': [img, '']}) imgasci = re.sub('.fits', '.asci', imgout) ntt.util.delete(imgasci) iraf.onedspec.wspectext( imgout + '[*,1,1]', imgasci, header='no') result = result + [imgout, imgd, imgasci] else: imgex = ntt.util.extractspectrum( img, dv, _ext_trace, _dispersionline, _interactive, 'std') imgout = ntt.efoscspec1Ddef.sensfunction( imgex, 'spline3', 6, _inter) result = result + [imgout] for img in result: if img[-5:] == '.fits': ntt.util.phase3header(img) # phase 3 definitions ntt.util.airmass(img) # phase 3 definitions ntt.util.updateheader( img, 0, {'quality': ['Rapid', 'Final or Rapid reduction']}) return result
def load_modules(): # Define a function to load all of the modules so that they don't' import # unless we need them global iraf from pyraf import iraf iraf.pysalt() iraf.saltspec() iraf.saltred() iraf.set(clobber='YES') global sys import sys global os import os global shutil import shutil global glob from glob import glob global pyfits import pyfits global np import numpy as np global lacosmicx import lacosmicx global interp from scipy import interp global signal from scipy import signal global ndimage from scipy import ndimage global interpolate from scipy import interpolate global WCS from astropy.wcs import WCS global optimize from scipy import optimize global ds9 import ds9 global GaussianProcess from sklearn.gaussian_process import GaussianProcess global pandas import pandas iraf.onedspec() iraf.twodspec() iraf.longslit() iraf.apextract() iraf.imutil()
print 'Trying /home/lemoen/' os.chdir('/home/lemoen/') except: print 'We must be on corvus then... trying /home/ezietsman/' os.chdir('/home/ezietsman/') from pyraf import iraf os.chdir(cd) try: os.remove('splot.log') except: pass # load NOAO package iraf.noao() iraf.astutil() iraf.onedspec() times = [] results = [] fwhm = [] for i in range(61,395): print i # open spectrum and calculate continuum level near Ha line then write to cursor file data = pf.getdata('fec2117_%04d.fits'%i) head = pf.getheader('fec2117_%04d.fits'%i) start = head['CRVAL1'] step = head['CDELT1'] length = head['NAXIS1']
""" import os import shutil import numpy as np import pyfits as pf from pyraf import iraf, iraffunctions import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from config import * from run_ppxf import wavelength_array iraf.onedspec(_doprint=0, Stdout=1) def select_specs(specs): specs = np.array(specs, dtype=str) exptimes = np.zeros(len(specs)) for i, spec in enumerate(specs): exptimes[i] = pf.getval(spec, "exptime") index = exptimes > 100. return specs[index].tolist() if __name__ == "__main__": wdir = os.path.join(home, "data/reduced") outroot = wdir.replace("reduced", "combined") outroot2 = wdir.replace("reduced", "single") if not os.path.exists(outroot): os.mkdir(outroot)
def telluric_atmo(imgstd): # print "LOGX:: Entering `telluric_atmo` method/function in %(__file__)s" # % globals() import numpy as np import ntt from pyraf import iraf try: import pyfits except: from astropy.io import fits as pyfits iraf.images(_doprint=0) iraf.noao(_doprint=0) iraf.twodspec(_doprint=0) iraf.longslit(_doprint=0) iraf.onedspec(_doprint=0) toforget = ['imfilter.gauss', 'specred.apall', 'longslit.identify', 'longslit.reidentify', 'specred.standard', 'onedspec.wspectext'] for t in toforget: iraf.unlearn(t) _grism = ntt.util.readkey3(ntt.util.readhdr(imgstd), 'grism') imgout = 'invers_atmo_' + imgstd ntt.util.delete(imgout) iraf.set(direc=ntt.__path__[0] + '/') _cursor = 'direc$standard/ident/cursor_sky_0' iraf.noao.onedspec.bplot(imgstd, cursor=_cursor, spec2=imgstd, new_ima=imgout, overwri='yes') xxstd, ffstd = ntt.util.readspectrum(imgout) if _grism in ['Gr13', 'Gr16']: llo2 = np.compress((np.array(xxstd) >= 7550) & ( np.array(xxstd) <= 7750), np.array(xxstd)) llh2o = np.compress((np.array(xxstd) >= 7100) & ( np.array(xxstd) <= 7500), np.array(xxstd)) ffo2 = np.compress((np.array(xxstd) >= 7550) & ( np.array(xxstd) <= 7750), np.array(ffstd)) ffh2o = np.compress((np.array(xxstd) >= 7100) & ( np.array(xxstd) <= 7500), np.array(ffstd)) elif _grism in ['Gr11']: llo2 = np.compress((np.array(xxstd) >= 6830) & ( np.array(xxstd) <= 7100), np.array(xxstd)) llh2o = np.compress((np.array(xxstd) >= 7100) & ( np.array(xxstd) <= 7500), np.array(xxstd)) ffo2 = np.compress((np.array(xxstd) >= 6830) & ( np.array(xxstd) <= 7100), np.array(ffstd)) ffh2o = np.compress((np.array(xxstd) >= 7100) & ( np.array(xxstd) <= 7500), np.array(ffstd)) if _grism in ['Gr13', 'Gr16', 'Gr11']: _skyfileh2o = 'direc$standard/ident/ATLAS_H2O.fits' _skyfileo2 = 'direc$standard/ident/ATLAS_O2.fits' atlas_smooto2 = '_atlas_smoot_o2.fits' atlas_smooth2o = '_atlas_smoot_h2o.fits' _sigma = 200 ntt.util.delete(atlas_smooto2) ntt.util.delete(atlas_smooth2o) iraf.imfilter.gauss(_skyfileh2o, output=atlas_smooth2o, sigma=_sigma) iraf.imfilter.gauss(_skyfileo2, output=atlas_smooto2, sigma=_sigma) llskyh2o, ffskyh2o = ntt.util.readspectrum(atlas_smooth2o) llskyo2, ffskyo2 = ntt.util.readspectrum(atlas_smooto2) ffskyo2cut = np.interp(llo2, llskyo2, ffskyo2) ffskyh2ocut = np.interp(llh2o, llskyh2o, ffskyh2o) _scaleh2o = [] integral_h2o = [] for i in range(1, 21): j = 0.6 + i * 0.04 _ffskyh2ocut = list((np.array(ffskyh2ocut) * j) + 1 - j) diff_h2o = abs(_ffskyh2ocut - ffh2o) integraleh2o = np.trapz(diff_h2o, llh2o) integral_h2o.append(integraleh2o) _scaleh2o.append(j) _scaleo2 = [] integral_o2 = [] for i in range(1, 21): j = 0.6 + i * 0.04 _ffskyo2cut = list((np.array(ffskyo2cut) * j) + 1 - j) diff_o2 = abs(_ffskyo2cut - ffo2) integraleo2 = np.trapz(diff_o2, llo2) integral_o2.append(integraleo2) _scaleo2.append(j) sh2o = _scaleh2o[np.argmin(integral_h2o)] so2 = _scaleo2[np.argmin(integral_o2)] telluric_features = ((np.array(ffskyh2o) * sh2o) + 1 - sh2o) + ((np.array(ffskyo2) * so2) + 1 - so2) - 1 telluric_features = np.array([1] + list(telluric_features) + [1]) llskyo2 = np.array([1000] + list(llskyo2) + [15000]) telluric_features_cut = np.interp(xxstd, llskyo2, telluric_features) _imgout = 'atmo_' + imgstd data1, hdr = pyfits.getdata(imgstd, 0, header=True) data1[0] = np.array(telluric_features_cut) data1[1] = data1[1] / data1[1] data1[2] = data1[2] / data1[2] data1[3] = data1[3] / data1[3] ntt.util.delete(_imgout) pyfits.writeto(_imgout, np.float32(data1), hdr) ntt.util.delete(atlas_smooto2) ntt.util.delete(atlas_smooth2o) ntt.util.delete(imgout) else: _imgout = '' print '### telluric correction with model not possible ' return _imgout
def efoscspec1Dredu(files, _interactive, _ext_trace, _dispersionline, liststandard, listatmo0, _automaticex, _verbose=False): # print "LOGX:: Entering `efoscspec1Dredu` method/function in # %(__file__)s" % globals() import ntt try: import pyfits except: from astropy.io import fits as pyfits import re import string import sys import os import numpy as np os.environ["PYRAF_BETA_STATUS"] = "1" _extinctdir = 'direc$standard/extinction/' _extinction = 'lasilla2.txt' _observatory = 'lasilla' import datetime now = datetime.datetime.now() datenow = now.strftime('20%y%m%d%H%M') MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days dv = ntt.dvex() scal = np.pi / 180. _gain = ntt.util.readkey3(ntt.util.readhdr( re.sub('\n', '', files[0])), 'gain') _rdnoise = ntt.util.readkey3( ntt.util.readhdr(re.sub('\n', '', files[0])), 'ron') std, rastd, decstd, magstd = ntt.util.readstandard( 'standard_efosc_mab.txt') objectlist = {} for img in files: hdr = ntt.util.readhdr(img) img = re.sub('\n', '', img) ntt.util.correctcard(img) _ra = ntt.util.readkey3(hdr, 'RA') _dec = ntt.util.readkey3(hdr, 'DEC') _object = ntt.util.readkey3(hdr, 'object') _grism = ntt.util.readkey3(hdr, 'grism') _filter = ntt.util.readkey3(hdr, 'filter') _slit = ntt.util.readkey3(hdr, 'slit') dd = np.arccos(np.sin(_dec * scal) * np.sin(decstd * scal) + np.cos(_dec * scal) * np.cos(decstd * scal) * np.cos((_ra - rastd) * scal)) * ((180 / np.pi) * 3600) if min(dd) < 100: _type = 'stdsens' else: _type = 'obj' if min(dd) < 100: ntt.util.updateheader( img, 0, {'stdname': [std[np.argmin(dd)], '']}) ntt.util.updateheader( img, 0, {'magstd': [float(magstd[np.argmin(dd)]), '']}) if _type not in objectlist: objectlist[_type] = {} if (_grism, _filter, _slit) not in objectlist[_type]: objectlist[_type][_grism, _filter, _slit] = [img] else: objectlist[_type][_grism, _filter, _slit].append(img) from pyraf import iraf iraf.noao(_doprint=0) iraf.imred(_doprint=0) iraf.specred(_doprint=0) iraf.imutil(_doprint=0) toforget = ['imutil.imcopy', 'specred.sarith', 'specred.standard'] for t in toforget: iraf.unlearn(t) iraf.specred.verbose = 'no' iraf.specred.dispaxi = 2 iraf.set(direc=ntt.__path__[0] + '/') sens = {} print objectlist outputfile = [] if 'obj' in objectlist.keys(): tpe = 'obj' elif 'stdsens' in objectlist.keys(): tpe = 'stdsens' else: sys.exit('error: no objects and no standards in the list') for setup in objectlist[tpe]: extracted = [] listatmo = [] if setup not in sens: sens[setup] = [] if tpe == 'obj': print '\n### setup= ', setup, '\n### objects= ', objectlist['obj'][setup], '\n' for img in objectlist['obj'][setup]: # hdr=readhdr(img) print '\n\n### next object= ', img, ' ', ntt.util.readkey3(ntt.util.readhdr(img), 'object'), '\n' if os.path.isfile(re.sub('.fits', '_ex.fits', img)): if ntt.util.readkey3(ntt.util.readhdr(re.sub('.fits', '_ex.fits', img)), 'quality') == 'Rapid': ntt.util.delete(re.sub('.fits', '_ex.fits', img)) imgex = ntt.util.extractspectrum(img, dv, _ext_trace, _dispersionline, _interactive, 'obj', automaticex=_automaticex) if not os.path.isfile(imgex): sys.exit('### error, extraction not computed') if not ntt.util.readkey3(ntt.util.readhdr(imgex), 'shift') and \ ntt.util.readkey3(ntt.util.readhdr(imgex), 'shift') != 0.0: # if not readkey3(readhdr(imgex),'shift'): ntt.efoscspec1Ddef.checkwavestd(imgex, _interactive) extracted.append(imgex) if imgex not in outputfile: outputfile.append(imgex) ntt.util.updateheader( imgex, 0, {'FILETYPE': [22107, 'extracted 1D spectrum ']}) ntt.util.updateheader(imgex, 0, { 'PRODCATG': ['SCIENCE.' + ntt.util.readkey3(ntt.util.readhdr(imgex), 'tech').upper(), 'Data product category']}) ntt.util.updateheader( imgex, 0, {'TRACE1': [img, 'Originating file']}) if os.path.isfile('database/ap' + re.sub('_ex.fits', '', imgex)): if 'database/ap' + re.sub('_ex.fits', '', imgex) not in outputfile: outputfile.append( 'database/ap' + re.sub('_ex.fits', '', imgex)) print '\n### all object with this setup extracted\n' if liststandard: standardlist = liststandard _type = 'stdfromdreducer' else: try: standardlist = objectlist['stdsens'][setup] _type = 'stdsens' except: standardlist = '' _type = '' if _type == 'stdfromdreducer' and len(extracted) >= 1: _outputsens2 = ntt.util.searchsens(extracted[0], standardlist)[0] print '\n### using standard from reducer ' + str(_outputsens2) elif _type not in ['stdsens', 'stdfromdreducer'] and len(extracted) >= 1: _outputsens2 = ntt.util.searchsens(extracted[0], '')[0] os.system('cp ' + _outputsens2 + ' .') _outputsens2 = string.split(_outputsens2, '/')[-1] print '\n### no standard in the list, using standard from archive' else: for simg in standardlist: print '\n### standard for setup ' + \ str(setup) + ' = ', simg, ' ', ntt.util.readkey3( ntt.util.readhdr(simg), 'object'), '\n' simgex = ntt.util.extractspectrum( simg, dv, False, False, _interactive, 'std', automaticex=_automaticex) ntt.util.updateheader( simgex, 0, {'FILETYPE': [22107, 'extracted 1D spectrum']}) ntt.util.updateheader(simgex, 0, { 'PRODCATG': [ 'SCIENCE.' + ntt.util.readkey3(ntt.util.readhdr(simgex), 'tech').upper(), 'Data product category']}) ntt.util.updateheader( simgex, 0, {'TRACE1': [simg, 'Originating file']}) if not ntt.util.readkey3(ntt.util.readhdr(simgex), 'shift') and \ ntt.util.readkey3(ntt.util.readhdr(simgex), 'shift') != 0.0: # if not readkey3(readhdr(simgex),'shift'): ntt.efoscspec1Ddef.checkwavestd(simgex, _interactive) atmofile = ntt.efoscspec1Ddef.telluric_atmo( simgex) # atmo file2 ntt.util.updateheader( atmofile, 0, {'TRACE1': [simgex, 'Originating file']}) ntt.util.updateheader( atmofile, 0, {'FILETYPE': [21211, 'telluric correction 1D spectrum ']}) if tpe != 'obj' and atmofile not in outputfile: outputfile.append(atmofile) if not listatmo0: listatmo.append(atmofile) sens[setup].append(simgex) if simgex not in outputfile: outputfile.append(simgex) if setup[0] == 'Gr13' and setup[1] == 'Free': if os.path.isfile(re.sub('Free', 'GG495', simg)): print '\n### extract standard frame with blocking filter to correct for second order contamination\n' simg2 = re.sub('Free', 'GG495', simg) simgex2 = ntt.util.extractspectrum(simg2, dv, False, False, _interactive, 'std', automaticex=_automaticex) ntt.util.updateheader( simgex2, 0, {'FILETYPE': [22107, 'extracted 1D spectrum']}) ntt.util.updateheader(simgex2, 0, { 'PRODCATG': ['SCIENCE.' + ntt.util.readkey3( ntt.util.readhdr(simgex2), 'tech').upper(), 'Data product category']}) if not ntt.util.readkey3(ntt.util.readhdr(simgex2), 'shift') and \ ntt.util.readkey3(ntt.util.readhdr(simgex2), 'shift') != 0.0: # if not readkey3(readhdr(simgex2),'shift'): ntt.efoscspec1Ddef.checkwavestd( simgex2, _interactive) ntt.util.updateheader( simgex2, 0, {'TRACE1': [simg2, 'Originating file']}) print '\n### standard available: ', sens[setup] if tpe == 'obj': if len(sens[setup]) > 1: goon = 'no' while goon != 'yes': stdused = raw_input( '\n### more than one standard for this setup, which one do you want to use [' + sens[setup][ 0] + '] ?') if not stdused: stdused = sens[setup][0] if os.path.isfile(stdused): goon = 'yes' else: stdused = sens[setup][0] stdvec = [stdused] else: stdvec = sens[setup] for stdused in stdvec: stdusedclean = re.sub('_ex', '_clean', stdused) ntt.util.delete(stdusedclean) iraf.specred.sarith( input1=stdused, op='/', input2=atmofile, output=stdusedclean, format='multispec') _outputsens2 = ntt.efoscspec1Ddef.sensfunction( stdusedclean, 'spline3', 16, _interactive) ntt.util.updateheader(_outputsens2, 0, {'FILETYPE': [ 21212, 'sensitivity function']}) ntt.util.updateheader( _outputsens2, 0, {'TRACE1': [stdused, 'Originating file']}) if setup[0] == 'Gr13' and setup[1] == 'Free': if os.path.isfile(re.sub('Free', 'GG495', stdused)): print '\n### compute sensitivity function of grim 13 with blocking filter ' \ 'to correct for second order contamination \n' stdused2 = re.sub('Free', 'GG495', stdused) if not ntt.util.readkey3(ntt.util.readhdr(stdused2), 'STDNAME'): ntt.util.updateheader(stdused2, 0, { 'STDNAME': [ntt.util.readkey3(ntt.util.readhdr(stdused), 'STDNAME'), '']}) atmofile2 = ntt.efoscspec1Ddef.telluric_atmo( stdused2) # atmo file2 stdusedclean2 = re.sub('_ex', '_clean', stdused2) ntt.util.delete(stdusedclean2) iraf.specred.sarith(input1=stdused2, op='/', input2=atmofile2, output=stdusedclean2, format='multispec') _outputsens3 = ntt.efoscspec1Ddef.sensfunction( stdusedclean2, 'spline3', 16, _interactive) ntt.util.updateheader(_outputsens3, 0, {'FILETYPE': [ 21212, 'sensitivity function']}) ntt.util.updateheader( _outputsens3, 0, {'TRACE1': [stdused2, 'Originating file']}) _outputsens2 = correctsens(_outputsens2, _outputsens3) if _outputsens2 not in outputfile: outputfile.append(_outputsens2) if _outputsens2 and tpe == 'obj': #################################################### for img in objectlist['obj'][setup]: # flux calibrate 2d images imgd = fluxcalib2d(img, _outputsens2) ntt.util.updateheader( imgd, 0, {'FILETYPE': [22209, '2D wavelength and flux calibrated spectrum ']}) ntt.util.updateheader( imgd, 0, {'TRACE1': [img, 'Originating files']}) iraf.hedit(imgd, 'PRODCATG', delete='yes', update='yes', verify='no') if imgd not in outputfile: outputfile.append(imgd) #################################################### # flux calib in the standard way if not listatmo and listatmo0: listatmo = listatmo0[:] for _imgex in extracted: _airmass = ntt.util.readkey3( ntt.util.readhdr(_imgex), 'airmass') _exptime = ntt.util.readkey3( ntt.util.readhdr(_imgex), 'exptime') _imgf = re.sub('_ex.fits', '_f.fits', _imgex) ntt.util.delete(_imgf) qqq = iraf.specred.calibrate(input=_imgex, output=_imgf, sensiti=_outputsens2, extinct='yes', flux='yes', extinction=_extinctdir + _extinction, observatory=_observatory, airmass=_airmass, ignorea='yes', exptime=_exptime, fnu='no') hedvec = {'SENSFUN': [_outputsens2, ''], 'FILETYPE': [22208, '1D wavelength and flux calibrated spectrum', ''], # 'SNR':[ntt.util.StoN(_imgf,50),'Average signal to noise ratio per pixel'], 'SNR': [ntt.util.StoN2(_imgf, False), 'Average signal to noise ratio per pixel'], 'BUNIT': ['erg/cm2/s/Angstrom', 'Physical unit of array values'], 'TRACE1': [_imgex, 'Originating file'], 'ASSON1': [re.sub('_f.fits', '_2df.fits', _imgf), 'Name of associated file'], 'ASSOC1': ['ANCILLARY.2DSPECTRUM', 'Category of associated file']} ntt.util.updateheader(_imgf, 0, hedvec) if _imgf not in outputfile: outputfile.append(_imgf) if listatmo: atmofile = ntt.util.searcharc(_imgex, listatmo)[0] if atmofile: _imge = re.sub('_f.fits', '_e.fits', _imgf) ntt.util.delete(_imge) iraf.specred.sarith(input1=_imgf, op='/', input2=atmofile, output=_imge, w1='INDEF', w2='INDEF', format='multispec') try: iraf.imutil.imcopy( input=_imgf + '[*,1,2]', output=_imge + '[*,1,2]', verbose='no') except: pass try: iraf.imutil.imcopy( input=_imgf + '[*,1,3]', output=_imge + '[*,1,3]', verbose='no') except: pass try: iraf.imutil.imcopy( input=_imgf + '[*,1,4]', output=_imge + '[*,1,4]', verbose='no') except: pass if _imge not in outputfile: outputfile.append(_imge) ntt.util.updateheader( _imge, 0, {'FILETYPE': [22210, '1D, wave, flux calib, telluric corr.']}) if atmofile not in outputfile: outputfile.append(atmofile) ntt.util.updateheader( _imge, 0, {'ATMOFILE': [atmofile, '']}) ntt.util.updateheader( _imge, 0, {'TRACE1': [_imgf, 'Originating file']}) imgin = _imge else: imgin = _imgf else: imgin = _imgf imgasci = re.sub('.fits', '.asci', imgin) ntt.util.delete(imgasci) iraf.onedspec(_doprint=0) iraf.onedspec.wspectext( imgin + '[*,1,1]', imgasci, header='no') if imgasci not in outputfile: outputfile.append(imgasci) print '\n### adding keywords for phase 3 ....... ' for img in outputfile: if str(img)[-5:] == '.fits': try: ntt.util.phase3header(img) # phase 3 definitions ntt.util.updateheader(img, 0, {'quality': ['Final', '']}) except: print 'Warning: ' + img + ' is not a fits file' try: if int(re.sub('\.', '', str(pyfits.__version__))[:2]) <= 30: aa = 'HIERARCH ' else: aa = '' except: aa = '' imm = pyfits.open(img, mode='update') hdr = imm[0].header if aa + 'ESO DPR CATG' in hdr: hdr.pop(aa + 'ESO DPR CATG') if aa + 'ESO DPR TECH' in hdr: hdr.pop(aa + 'ESO DPR TECH') if aa + 'ESO DPR TYPE' in hdr: hdr.pop(aa + 'ESO DPR TYPE') imm.flush() imm.close() print outputfile reduceddata = ntt.rangedata(outputfile) f = open('logfile_spec1d_' + str(reduceddata) + '_' + str(datenow) + '.raw.list', 'w') for img in outputfile: try: f.write(ntt.util.readkey3(ntt.util.readhdr(img), 'arcfile') + '\n') except: pass f.close() return outputfile, 'logfile_spec1d_' + str(reduceddata) + '_' + str(datenow) + '.raw.list'
import matplotlib.pyplot as plt from datetime import date import operator import time import traceback from lmfit import minimize, Parameters, report_fit #import cosmics iraf.noao(_doprint=0,Stdout="/dev/null") iraf.rv(_doprint=0,Stdout="/dev/null") iraf.imred(_doprint=0,Stdout="/dev/null") iraf.ccdred(_doprint=0,Stdout="/dev/null") iraf.images(_doprint=0,Stdout="/dev/null") iraf.immatch(_doprint=0,Stdout="/dev/null") iraf.onedspec(_doprint=0,Stdout="/dev/null") iraf.twodspec(_doprint=0,Stdout="/dev/null") iraf.apextract(_doprint=0,Stdout="/dev/null") iraf.imutil(_doprint=0,Stdout="/dev/null") iraf.echelle(_doprint=0,Stdout="/dev/null") iraf.astutil(_doprint=0,Stdout="/dev/null") iraf.apextract.dispaxi=1 iraf.echelle.dispaxi=1 #fixes a bug with latest versions of iraf iraf.ccdred.instrum='blank.txt' os.environ['PYRAF_BETA_STATUS'] = '1' # REFS NEW: ecEC59550 ecEC59758 ecEC59795 ecEC59842 ecEC59844 ecEC59864 ecEC59866 ecEC59881 ecEC59883 ecEC59885
def efoscfastredu(imglist, _listsens, _listarc, _ext_trace, _dispersionline, _cosmic, _interactive): # print "LOGX:: Entering `efoscfastredu` method/function in %(__file__)s" # % globals() import string import os import re import sys os.environ["PYRAF_BETA_STATUS"] = "1" try: from astropy.io import fits as pyfits except: import pyfits from ntt.util import readhdr, readkey3 import ntt import numpy as np dv = ntt.dvex() scal = np.pi / 180. if not _interactive: _interactive = False _inter = 'NO' else: _inter = 'YES' from pyraf import iraf iraf.noao(_doprint=0, Stdout=0) iraf.imred(_doprint=0, Stdout=0) iraf.ccdred(_doprint=0, Stdout=0) iraf.twodspec(_doprint=0, Stdout=0) iraf.longslit(_doprint=0, Stdout=0) iraf.onedspec(_doprint=0, Stdout=0) iraf.specred(_doprint=0, Stdout=0) toforget = [ 'ccdproc', 'imcopy', 'specred.apall', 'longslit.identify', 'longslit.reidentify', 'specred.standard', 'longslit.fitcoords', 'onedspec.wspectext' ] for t in toforget: iraf.unlearn(t) iraf.ccdred.verbose = 'no' # not print steps iraf.specred.verbose = 'no' # not print steps iraf.ccdproc.darkcor = 'no' iraf.ccdproc.fixpix = 'no' iraf.ccdproc.flatcor = 'no' iraf.ccdproc.zerocor = 'no' iraf.ccdproc.ccdtype = '' _gain = ntt.util.readkey3(ntt.util.readhdr(imglist[0]), 'gain') _ron = ntt.util.readkey3(ntt.util.readhdr(imglist[0]), 'ron') iraf.specred.apall.readnoi = _ron iraf.specred.apall.gain = _gain iraf.specred.dispaxi = 2 iraf.longslit.dispaxi = 2 iraf.longslit.mode = 'h' iraf.specred.mode = 'h' iraf.noao.mode = 'h' iraf.ccdred.instrument = "ccddb$kpno/camera.dat" iraf.set(direc=ntt.__path__[0] + '/') for img in imglist: hdr = ntt.util.readhdr(img) _tech = ntt.util.readkey3(hdr, 'tech') if _tech != 'SPECTRUM': sys.exit('error: ' + str(img) + ' is not a spectrum ') print '\n#### image name = ' + img + '\n' _grism0 = readkey3(hdr, 'grism') _filter0 = readkey3(hdr, 'filter') _slit0 = readkey3(hdr, 'slit') _object0 = readkey3(hdr, 'object') _date0 = readkey3(hdr, 'date-night') setup = (_grism0, _filter0, _slit0) _biassec0 = '[3:1010,1026:1029]' if _grism0 == 'Gr16': _trimsec0 = '[100:950,1:950]' elif _grism0 == 'Gr13': if _filter0 == 'Free': _trimsec0 = '[100:950,1:1015]' elif _filter0 == 'GG495': _trimsec0 = '[100:950,208:1015]' elif _filter0 == 'OG530': _trimsec0 = '[100:950,300:1015]' elif _grism0 == 'Gr11': _trimsec0 = '[100:950,5:1015]' else: _trimsec0 = '[100:950,5:1015]' _object0 = re.sub(' ', '', _object0) _object0 = re.sub('/', '_', _object0) nameout0 = 't' + str(_object0) + '_' + str(_date0) for _set in setup: nameout0 = nameout0 + '_' + _set nameout0 = ntt.util.name_duplicate(img, nameout0, '') timg = nameout0 if os.path.isfile(timg): os.system('rm -rf ' + timg) iraf.imcopy(img, output=timg) iraf.ccdproc(timg, output='', overscan='no', trim='yes', zerocor="no", flatcor="no", readaxi='column', trimsec=str(_trimsec0), biassec=_biassec0, Stdout=1) img = timg if _listarc: arcfile = ntt.util.searcharc(img, _listarc)[0] else: arcfile = '' if not arcfile: arcfile = ntt.util.searcharc(img, '')[0] else: iraf.ccdproc(arcfile, output='t' + arcfile, overscan='no', trim='yes', zerocor="no", flatcor="no", readaxi='column', trimsec=str(_trimsec0), biassec=str(_biassec0), Stdout=1) arcfile = 't' + arcfile if _cosmic: # print cosmic rays rejection ntt.cosmics.lacos(img, output='', gain=_gain, readn=_ron, xorder=9, yorder=9, sigclip=4.5, sigfrac=0.5, objlim=1, verbose=True, interactive=False) print '\n### cosmic rays rejections ........ done ' if not arcfile: print '\n### warning no arcfile \n exit ' else: arcref = ntt.util.searcharc(img, '')[0] if arcfile[0] == '/': os.system('cp ' + arcfile + ' ' + string.split(arcfile, '/')[-1]) arcfile = string.split(arcfile, '/')[-1] arcref = string.split(arcref, '/')[-1] if arcref: os.system('cp ' + arcref + ' .') arcref = string.split(arcref, '/')[-1] if not os.path.isdir('database/'): os.mkdir('database/') if os.path.isfile( ntt.util.searcharc(img, '')[1] + '/database/id' + re.sub('.fits', '', arcref)): os.system('cp ' + ntt.util.searcharc(img, '')[1] + '/database/id' + re.sub('.fits', '', arcref) + ' database/') iraf.longslit.reidentify( referenc=arcref, images=arcfile, interac=_inter, section='column 10', coordli='direc$standard/ident/Lines_HgCdHeNeAr600.dat', overrid='yes', step=0, newaps='no', nsum=5, nlost=2, mode='h', verbose='no') else: iraf.longslit.identify( images=arcfile, section='column 10', coordli='direc$standard/ident/Lines_HgCdHeNeAr600.dat', nsum=10, fwidth=7, order=3, mode='h') iraf.longslit.reident( referenc=arcfile, images=arcfile, interac='NO', section='column 10', coordli='direc$standard/ident/Lines_HgCdHeNeAr600.dat', overrid='yes', step=10, newaps='yes', nsum=5, nlost=2, mode='h', verbose='no') qqq = iraf.longslit.fitcoords(images=re.sub('.fits', '', arcfile), fitname=re.sub('.fits', '', arcfile), interac='no', combine='yes', databas='database', function='legendre', yorder=4, logfile='logfile', plotfil='', mode='h') iraf.specred.transform(input=img, output=img, minput='', fitnames=re.sub('.fits', '', arcfile), databas='database', x1='INDEF', x2='INDEF', y1='INDEF', y2='INDEF', flux='yes', mode='h', logfile='logfile') # ###################### check wavelength calibration ############ _skyfile = ntt.__path__[0] + '/standard/ident/sky_' + setup[ 0] + '_' + setup[1] + '.fits' shift = ntt.efoscspec2Ddef.skyfrom2d(img, _skyfile) print '\n### check in wavelengh performed ...... spectrum shifted of ' + str( shift) + ' Angstrom \n' zro = pyfits.open(img)[0].header.get('CRVAL2') ntt.util.updateheader(img, 0, {'CRVAL2': [zro + int(shift), '']}) std, rastd, decstd, magstd = ntt.util.readstandard( 'standard_efosc_mab.txt') hdrt = readhdr(img) _ra = readkey3(hdrt, 'RA') _dec = readkey3(hdrt, 'DEC') _object = readkey3(hdrt, 'object') dd = np.arccos( np.sin(_dec * scal) * np.sin(decstd * scal) + np.cos(_dec * scal) * np.cos(decstd * scal) * np.cos( (_ra - rastd) * scal)) * ((180 / np.pi) * 3600) if min(dd) < 100: _type = 'stdsens' ntt.util.updateheader(img, 0, {'stdname': [std[np.argmin(dd)], '']}) ntt.util.updateheader( img, 0, {'magstd': [float(magstd[np.argmin(dd)]), '']}) else: _type = 'obj' print '\n### EXTRACTION USING IRAF TASK APALL \n' result = [] if _type == 'obj': imgex = ntt.util.extractspectrum(img, dv, _ext_trace, _dispersionline, _interactive, _type) ntt.util.updateheader( imgex, 0, {'FILETYPE': [22107, 'extracted 1D spectrum ']}) ntt.util.updateheader( imgex, 0, { 'PRODCATG': [ 'SCIENCE.' + readkey3(readhdr(imgex), 'tech').upper(), 'Data product category' ] }) ntt.util.updateheader(imgex, 0, {'TRACE1': [img, '']}) result.append(imgex) if _listsens: sensfile = ntt.util.searchsens(img, _listsens)[0] else: sensfile = '' if not sensfile: sensfile = ntt.util.searchsens(img, '')[0] if sensfile: imgf = re.sub('.fits', '_f.fits', img) _extinctdir = 'direc$standard/extinction/' _extinction = 'extinction_lasilla.dat' _observatory = 'lasilla' _exptime = readkey3(hdrt, 'exptime') _airmass = readkey3(hdrt, 'airmass') ntt.util.delete(imgf) iraf.specred.calibrate(input=imgex, output=imgf, sensiti=sensfile, extinct='yes', flux='yes', ignorea='yes', extinction=_extinctdir + _extinction, observatory=_observatory, airmass=_airmass, exptime=_exptime, fnu='no') hedvec = { 'SENSFUN': [ string.split(sensfile, '/')[-1], 'sensitivity function' ], 'FILETYPE': [22208, '1D wavelength and flux calibrated spectrum '], 'SNR': [ntt.util.StoN2(imgf, False), 'Average S/N ratio'], 'BUNIT': ['erg/cm2/s/Angstrom', 'Flux Calibration Units'], 'TRACE1': [imgex, ''] } ntt.util.updateheader(imgf, 0, hedvec) imgout = imgf imgd = ntt.efoscspec1Ddef.fluxcalib2d(img, sensfile) ntt.util.updateheader( imgd, 0, { 'FILETYPE': [ 22209, '2D wavelength and flux calibrated spectrum ' ] }) ntt.util.updateheader(imgd, 0, {'TRACE1': [img, '']}) imgasci = re.sub('.fits', '.asci', imgout) ntt.util.delete(imgasci) iraf.onedspec.wspectext(imgout + '[*,1,1]', imgasci, header='no') result = result + [imgout, imgd, imgasci] else: imgex = ntt.util.extractspectrum(img, dv, _ext_trace, _dispersionline, _interactive, 'std') imgout = ntt.efoscspec1Ddef.sensfunction( imgex, 'spline3', 6, _inter) result = result + [imgout] for img in result: if img[-5:] == '.fits': ntt.util.phase3header(img) # phase 3 definitions ntt.util.airmass(img) # phase 3 definitions ntt.util.updateheader( img, 0, {'quality': ['Rapid', 'Final or Rapid reduction']}) return result
def telluric_correction(targetdir,telluricdir,stype): """ Removes telluric lines from 1D spectrum Assumes both science and telluric spectrum have been extracted and wavelength calibrated, i.e. file dimcomb.ms.fits exists in telluric directory. """ print 'Target directory is ' + targetdir if os.path.exists( os.path.join(targetdir,'dimcomb.ms.fits') ): print "Wavelength calibrated target spectrum 'dimcomb.ms.fits' exists" print 'Telluric directory is ' + telluricdir if os.path.exists( os.path.join(telluricdir,'dimcomb.ms.fits') ): print "Wavelength calibrated telluric spectrum 'dimcomb.ms.fits' exists" print 'Generating black-body spectrum...' print 'Telluric star type ' + stype # from this site http://www.gemini.edu/sciops/instruments/nir/photometry/temps_colors.txt if stype == 'A0V': bbtemp = 9480.0 if stype == 'A1V': bbtemp = 9230.0 if stype == 'A2V': bbtemp = 8810.0 if stype == 'A3V': bbtemp = 8270.0 if stype == 'A4V': bbtemp = 8200.0 if stype == 'A5V': bbtemp = 8160.0 print 'Fitting with blackbody, temperature = ' + str(bbtemp) + 'K' iraf.noao(_doprint=0) iraf.artdata (_doprint=0) if os.path.exists( os.path.join(telluricdir,'blackbody.fits') ): os.remove( os.path.join(telluricdir,'blackbody.fits') ) iraf.mk1dspec.setParam('input', os.path.join(telluricdir,'blackbody.fits') ) iraf.mk1dspec.setParam('title','blackbody') iraf.mk1dspec.setParam('ncols',1024) iraf.mk1dspec.setParam('wstart',13900) iraf.mk1dspec.setParam('wend',24000) iraf.mk1dspec.setParam('temperature',bbtemp) iraf.mk1dspec() print 'Generated blackbody spectrum' # Divide telluric star spectrum by black-body if os.path.exists( os.path.join(telluricdir,'tdimcomb.ms.fits') ): os.remove( os.path.join(telluricdir,'tdimcomb.ms.fits') ) iraf.onedspec(_doprint=0) """ To divide by blackbody I want to turn off the cross-correlation - which I think would only work if both spectra had similar features. I don't want to scale the spectrum - which scales the airmass using Beer's Law - or shift it. If the temperature is correct I should be able to simply divide. If not then I should change the temperature """ iraf.telluric.setParam('input',os.path.join(telluricdir,'dimcomb.ms.fits') ) # List of input spectra to correct iraf.telluric.setParam('output',os.path.join(telluricdir,'tdimcomb.ms.fits') ) # List of output corrected spectra iraf.telluric.setParam('cal',os.path.join(telluricdir,'blackbody.fits') ) # List of telluric calibration spectra iraf.telluric.setParam('answer','yes') # Search interactively? iraf.telluric.setParam('xcorr', 'no') # Cross correlate for shift? iraf.telluric.setParam('tweakrms', 'no') # Twak to minise rms? iraf.telluric.setParam('interactive', 'yes') # Interactive? iraf.telluric.setParam('threshold',0.0) # Threshold for calibration iraf.telluric.setParam('offset',1) # Displayed offset between spectra iraf.telluric.setParam('sample','15000:18000,19700:23800') iraf.telluric.setParam('dshift',5.0) iraf.telluric.setParam('smooth',3.0) iraf.telluric() """ When your calibration spectrum has zero or negative intensity values, you have to set the "threshold" parameter accordingly. As explained in the help page for the TELLURIC task, you can think of the "threshold" value as the minimum intensity value TELLURIC will accept from your calibration spectra. Any intensity value lower than the threshold value will be replaced by the threshold. """ """ I've turned cross-correlation off, since I don't really understand it. Tweak is on, but doesn't seem to do that much. Still not sure if it's understanding the airmass """ print 'Now correcting target spectrum...' if os.path.exists( os.path.join(targetdir,'tdimcomb+bkgd.ms.fits') ): os.remove( os.path.join(targetdir,'tdimcomb+bkgd.ms.fits') ) iraf.telluric.setParam('input',os.path.join(targetdir,'dimcomb+bkgd.ms.fits') ) # List of input spectra to correct iraf.telluric.setParam('output',os.path.join(targetdir,'tdimcomb+bkgd.ms.fits') ) # List of output corrected spectra iraf.telluric.setParam('cal',os.path.join(telluricdir,'tdimcomb.ms.fits') ) # List of telluric calibration spectra iraf.telluric.setParam('answer','yes') # Search interactively? iraf.telluric.setParam('threshold',0.0) iraf.telluric.setParam('xcorr', 'no') # Cross correlate for shift? iraf.telluric.setParam('tweakrms', 'yes') # Tweak to minise rms? iraf.telluric.setParam('interactive', 'yes') # Interactive? iraf.telluric.setParam('offset',6) # Displayed offset between spectra hdulist = fits.open(os.path.join(targetdir,'imcomb.ms.fits')) hdr = hdulist[0].header hdulist.close() iraf.telluric.setParam('airmass',hdr['AIRMASS']) iraf.telluric() return None
def reduce(imglist, files_arc, files_flat, _cosmic, _interactive_extraction, _arc): import string import os import re import sys import pdb os.environ["PYRAF_BETA_STATUS"] = "1" try: from astropy.io import fits as pyfits except: import pyfits import numpy as np import util import instruments import combine_sides as cs import cosmics from pyraf import iraf dv = util.dvex() scal = np.pi / 180. if not _interactive_extraction: _interactive = False else: _interactive = True if not _arc: _arc_identify = False else: _arc_identify = True iraf.noao(_doprint=0) iraf.imred(_doprint=0) iraf.ccdred(_doprint=0) iraf.twodspec(_doprint=0) iraf.longslit(_doprint=0) iraf.onedspec(_doprint=0) iraf.specred(_doprint=0) iraf.disp(inlist='1', reference='1') toforget = [ 'ccdproc', 'imcopy', 'specred.apall', 'longslit.identify', 'longslit.reidentify', 'specred.standard', 'longslit.fitcoords', 'onedspec.wspectext' ] for t in toforget: iraf.unlearn(t) iraf.ccdred.verbose = 'no' iraf.specred.verbose = 'no' iraf.ccdproc.darkcor = 'no' iraf.ccdproc.fixpix = 'no' iraf.ccdproc.flatcor = 'no' iraf.ccdproc.zerocor = 'no' iraf.ccdproc.ccdtype = '' iraf.longslit.mode = 'h' iraf.specred.mode = 'h' iraf.noao.mode = 'h' iraf.ccdred.instrument = "ccddb$kpno/camera.dat" list_arc_b = [] list_arc_r = [] for arcs in files_arc: hdr = util.readhdr(arcs) br, inst = instruments.blue_or_red(arcs) if br == 'blue': list_arc_b.append(arcs) elif br == 'red': list_arc_r.append(arcs) else: errStr = '{} '.format(str(util.readkey3(hdr, 'VERSION'))) errStr += 'not in database' print(errStr) sys.exit() asci_files = [] newlist = [[], []] print('\n### images to reduce :', imglist) #raise TypeError for img in imglist: if 'b' in img: newlist[0].append(img) elif 'r' in img: newlist[1].append(img) if len(newlist[1]) < 1: newlist = newlist[:-1] elif len(newlist[0]) < 1: newlist = newlist[1:] else: sides = raw_input("Reduce which side? ([both]/b/r): ") if sides == 'b': newlist = newlist[:-1] elif sides == 'r': newlist = newlist[1:] for imgs in newlist: hdr = util.readhdr(imgs[0]) br, inst = instruments.blue_or_red(imgs[0]) if br == 'blue': flat_file = '../RESP_blue' elif br == 'red': flat_file = '../RESP_red' else: errStr = 'Not in intrument list' print(errStr) sys.exit() iraf.specred.dispaxi = inst.get('dispaxis') iraf.longslit.dispaxi = inst.get('dispaxis') _gain = inst.get('gain') _ron = inst.get('read_noise') iraf.specred.apall.readnoi = _ron iraf.specred.apall.gain = _gain _object0 = util.readkey3(hdr, 'OBJECT') _date0 = util.readkey3(hdr, 'DATE-OBS') _object0 = re.sub(' ', '', _object0) _object0 = re.sub('/', '_', _object0) nameout0 = str(_object0) + '_' + inst.get('name') + '_' + str(_date0) nameout0 = util.name_duplicate(imgs[0], nameout0, '') timg = nameout0 print('\n### now processing :', timg, ' for -> ', inst.get('name')) if len(imgs) > 1: img_str = '' for i in imgs: img_str = img_str + i + ',' iraf.imcombine(img_str, output=timg) else: img = imgs[0] if os.path.isfile(timg): os.system('rm -rf ' + timg) iraf.imcopy(img, output=timg) # should just do this by hand iraf.ccdproc(timg, output='', overscan='no', trim='no', zerocor="no", flatcor="yes", readaxi='line', flat=flat_file, Stdout=1) img = timg #raw_input("Press Enter to continue...") if _cosmic: print('\n### starting cosmic removal') array, header = cosmics.fromfits(img) c = cosmics.cosmicsimage(array, gain=inst.get('gain'), readnoise=inst.get('read_noise'), sigclip=5, sigfrac=0.5, objlim=2.0) c.run(maxiter=5) cosmics.tofits('cosmic_' + img, c.cleanarray, header) img = 'cosmic_' + img print('\n### cosmic removal finished') else: print( '\n### No cosmic removal, saving normalized image for inspection???' ) if inst.get('arm') == 'blue' and len(list_arc_b) > 0: arcfile = list_arc_b[0] elif inst.get('arm') == 'red' and len(list_arc_r) > 0: arcfile = list_arc_r[0] else: arcfile = None if arcfile is not None and not arcfile.endswith(".fits"): arcfile = arcfile + '.fits' if not os.path.isdir('database/'): os.mkdir('database/') if _arc_identify: os.system('cp ' + arcfile + ' .') arcfile = string.split(arcfile, '/')[-1] arc_ex = re.sub('.fits', '.ms.fits', arcfile) arcref = inst.get('archive_arc_extracted') arcref_img = string.split(arcref, '/')[-1] arcref_img = arcref_img.replace('.ms.fits', '') arcrefid = inst.get('archive_arc_extracted_id') os.system('cp ' + arcref + ' .') arcref = string.split(arcref, '/')[-1] os.system('cp ' + arcrefid + ' ./database') aperture = inst.get('archive_arc_aperture') os.system('cp ' + aperture + ' ./database') print('\n### arcfile : ', arcfile) print('\n### arcfile extraction : ', arc_ex) print('\n### arc reference : ', arcref) # read for some meta data to get the row right tmpHDU = pyfits.open(arcfile) header = tmpHDU[0].header try: spatialBin = int(header['binning'].split(',')[0]) except KeyError: spatialBin = 1 apLine = 700 // spatialBin iraf.specred.apall(arcfile, output=arc_ex, ref=arcref_img, line=apLine, nsum=10, interactive='no', extract='yes', find='yes', nfind=1, format='multispec', trace='no', back='no', recen='no') iraf.longslit.reidentify(referenc=arcref, images=arc_ex, interac='NO', section=inst.get('section'), coordli=inst.get('line_list'), shift='INDEF', search='INDEF', mode='h', verbose='YES', step=0, nsum=5, nlost=2, cradius=10, refit='yes', overrid='yes', newaps='no') print('\n### extraction using apall') result = [] hdr_image = util.readhdr(img) _type = util.readkey3(hdr_image, 'object') if (_type.startswith("arc") or _type.startswith("dflat") or _type.startswith("Dflat") or _type.startswith("Dbias") or _type.startswith("Bias")): print('\n### warning problem \n exit ') sys.exit() else: imgex = util.extractspectrum(img, dv, inst, _interactive, 'obj') print('\n### applying wavelength solution') print(arc_ex) iraf.disp(inlist=imgex, reference=arc_ex) result = result + [imgex] + [timg] # asci_files.append(imgasci) if not os.path.isdir(_object0 + '_ex/'): os.mkdir(_object0 + '_ex/') if not _arc_identify: util.delete(arcref) else: util.delete(arcfile) util.delete(arc_ex) util.delete(img) util.delete(imgex) util.delete(arcref) util.delete('logfile') #if _cosmic: #util.delete(img[7:]) #util.delete("cosmic_*") os.system('mv ' + 'd' + imgex + ' ' + _object0 + '_ex/') use_sens = raw_input('Use archival flux calibration? [y]/n ') if use_sens != 'no': sensfile = inst.get('archive_sens') os.system('cp ' + sensfile + ' ' + _object0 + '_ex/') bstarfile = inst.get('archive_bstar') os.system('cp ' + bstarfile + ' ' + _object0 + '_ex/') return result
def efoscspec1Dredu(files, _interactive, _ext_trace, _dispersionline, liststandard, listatmo0, _automaticex, _verbose=False): # print "LOGX:: Entering `efoscspec1Dredu` method/function in # %(__file__)s" % globals() import ntt try: import pyfits except: from astropy.io import fits as pyfits import re import string import sys import os import numpy as np os.environ["PYRAF_BETA_STATUS"] = "1" _extinctdir = 'direc$standard/extinction/' _extinction = 'lasilla2.txt' _observatory = 'lasilla' import datetime now = datetime.datetime.now() datenow = now.strftime('20%y%m%d%H%M') MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days dv = ntt.dvex() scal = np.pi / 180. _gain = ntt.util.readkey3(ntt.util.readhdr(re.sub('\n', '', files[0])), 'gain') _rdnoise = ntt.util.readkey3(ntt.util.readhdr(re.sub('\n', '', files[0])), 'ron') std, rastd, decstd, magstd = ntt.util.readstandard( 'standard_efosc_mab.txt') objectlist = {} for img in files: hdr = ntt.util.readhdr(img) img = re.sub('\n', '', img) ntt.util.correctcard(img) _ra = ntt.util.readkey3(hdr, 'RA') _dec = ntt.util.readkey3(hdr, 'DEC') _object = ntt.util.readkey3(hdr, 'object') _grism = ntt.util.readkey3(hdr, 'grism') _filter = ntt.util.readkey3(hdr, 'filter') _slit = ntt.util.readkey3(hdr, 'slit') dd = np.arccos( np.sin(_dec * scal) * np.sin(decstd * scal) + np.cos(_dec * scal) * np.cos(decstd * scal) * np.cos( (_ra - rastd) * scal)) * ((180 / np.pi) * 3600) if min(dd) < 100: _type = 'stdsens' else: _type = 'obj' if min(dd) < 100: ntt.util.updateheader(img, 0, {'stdname': [std[np.argmin(dd)], '']}) ntt.util.updateheader( img, 0, {'magstd': [float(magstd[np.argmin(dd)]), '']}) if _type not in objectlist: objectlist[_type] = {} if (_grism, _filter, _slit) not in objectlist[_type]: objectlist[_type][_grism, _filter, _slit] = [img] else: objectlist[_type][_grism, _filter, _slit].append(img) from pyraf import iraf iraf.noao(_doprint=0) iraf.imred(_doprint=0) iraf.specred(_doprint=0) iraf.imutil(_doprint=0) toforget = ['imutil.imcopy', 'specred.sarith', 'specred.standard'] for t in toforget: iraf.unlearn(t) iraf.specred.verbose = 'no' iraf.specred.dispaxi = 2 iraf.set(direc=ntt.__path__[0] + '/') sens = {} print objectlist outputfile = [] if 'obj' in objectlist.keys(): tpe = 'obj' elif 'stdsens' in objectlist.keys(): tpe = 'stdsens' else: sys.exit('error: no objects and no standards in the list') for setup in objectlist[tpe]: extracted = [] listatmo = [] if setup not in sens: sens[setup] = [] if tpe == 'obj': print '\n### setup= ', setup, '\n### objects= ', objectlist['obj'][ setup], '\n' for img in objectlist['obj'][setup]: # hdr=readhdr(img) print '\n\n### next object= ', img, ' ', ntt.util.readkey3( ntt.util.readhdr(img), 'object'), '\n' if os.path.isfile(re.sub('.fits', '_ex.fits', img)): if ntt.util.readkey3( ntt.util.readhdr(re.sub('.fits', '_ex.fits', img)), 'quality') == 'Rapid': ntt.util.delete(re.sub('.fits', '_ex.fits', img)) imgex = ntt.util.extractspectrum(img, dv, _ext_trace, _dispersionline, _interactive, 'obj', automaticex=_automaticex) if not os.path.isfile(imgex): sys.exit('### error, extraction not computed') if not ntt.util.readkey3(ntt.util.readhdr(imgex), 'shift') and \ ntt.util.readkey3(ntt.util.readhdr(imgex), 'shift') != 0.0: # if not readkey3(readhdr(imgex),'shift'): ntt.efoscspec1Ddef.checkwavestd(imgex, _interactive) extracted.append(imgex) if imgex not in outputfile: outputfile.append(imgex) ntt.util.updateheader( imgex, 0, {'FILETYPE': [22107, 'extracted 1D spectrum ']}) ntt.util.updateheader( imgex, 0, { 'PRODCATG': [ 'SCIENCE.' + ntt.util.readkey3( ntt.util.readhdr(imgex), 'tech').upper(), 'Data product category' ] }) ntt.util.updateheader(imgex, 0, {'TRACE1': [img, 'Originating file']}) if os.path.isfile('database/ap' + re.sub('_ex.fits', '', imgex)): if 'database/ap' + re.sub('_ex.fits', '', imgex) not in outputfile: outputfile.append('database/ap' + re.sub('_ex.fits', '', imgex)) print '\n### all object with this setup extracted\n' if liststandard: standardlist = liststandard _type = 'stdfromdreducer' else: try: standardlist = objectlist['stdsens'][setup] _type = 'stdsens' except: standardlist = '' _type = '' if _type == 'stdfromdreducer' and len(extracted) >= 1: _outputsens2 = ntt.util.searchsens(extracted[0], standardlist)[0] print '\n### using standard from reducer ' + str(_outputsens2) elif _type not in ['stdsens', 'stdfromdreducer' ] and len(extracted) >= 1: _outputsens2 = ntt.util.searchsens(extracted[0], '')[0] os.system('cp ' + _outputsens2 + ' .') _outputsens2 = string.split(_outputsens2, '/')[-1] print '\n### no standard in the list, using standard from archive' else: for simg in standardlist: print '\n### standard for setup ' + \ str(setup) + ' = ', simg, ' ', ntt.util.readkey3( ntt.util.readhdr(simg), 'object'), '\n' simgex = ntt.util.extractspectrum(simg, dv, False, False, _interactive, 'std', automaticex=_automaticex) ntt.util.updateheader( simgex, 0, {'FILETYPE': [22107, 'extracted 1D spectrum']}) ntt.util.updateheader( simgex, 0, { 'PRODCATG': [ 'SCIENCE.' + ntt.util.readkey3( ntt.util.readhdr(simgex), 'tech').upper(), 'Data product category' ] }) ntt.util.updateheader(simgex, 0, {'TRACE1': [simg, 'Originating file']}) if not ntt.util.readkey3(ntt.util.readhdr(simgex), 'shift') and \ ntt.util.readkey3(ntt.util.readhdr(simgex), 'shift') != 0.0: # if not readkey3(readhdr(simgex),'shift'): ntt.efoscspec1Ddef.checkwavestd(simgex, _interactive) atmofile = ntt.efoscspec1Ddef.telluric_atmo( simgex) # atmo file2 ntt.util.updateheader(atmofile, 0, {'TRACE1': [simgex, 'Originating file']}) ntt.util.updateheader( atmofile, 0, {'FILETYPE': [21211, 'telluric correction 1D spectrum ']}) if tpe != 'obj' and atmofile not in outputfile: outputfile.append(atmofile) if not listatmo0: listatmo.append(atmofile) sens[setup].append(simgex) if simgex not in outputfile: outputfile.append(simgex) if setup[0] == 'Gr13' and setup[1] == 'Free': if os.path.isfile(re.sub('Free', 'GG495', simg)): print '\n### extract standard frame with blocking filter to correct for second order contamination\n' simg2 = re.sub('Free', 'GG495', simg) simgex2 = ntt.util.extractspectrum( simg2, dv, False, False, _interactive, 'std', automaticex=_automaticex) ntt.util.updateheader( simgex2, 0, {'FILETYPE': [22107, 'extracted 1D spectrum']}) ntt.util.updateheader( simgex2, 0, { 'PRODCATG': [ 'SCIENCE.' + ntt.util.readkey3( ntt.util.readhdr(simgex2), 'tech').upper(), 'Data product category' ] }) if not ntt.util.readkey3(ntt.util.readhdr(simgex2), 'shift') and \ ntt.util.readkey3(ntt.util.readhdr(simgex2), 'shift') != 0.0: # if not readkey3(readhdr(simgex2),'shift'): ntt.efoscspec1Ddef.checkwavestd( simgex2, _interactive) ntt.util.updateheader( simgex2, 0, {'TRACE1': [simg2, 'Originating file']}) print '\n### standard available: ', sens[setup] if tpe == 'obj': if len(sens[setup]) > 1: goon = 'no' while goon != 'yes': stdused = raw_input( '\n### more than one standard for this setup, which one do you want to use [' + sens[setup][0] + '] ?') if not stdused: stdused = sens[setup][0] if os.path.isfile(stdused): goon = 'yes' else: stdused = sens[setup][0] stdvec = [stdused] else: stdvec = sens[setup] for stdused in stdvec: stdusedclean = re.sub('_ex', '_clean', stdused) ntt.util.delete(stdusedclean) iraf.specred.sarith(input1=stdused, op='/', input2=atmofile, output=stdusedclean, format='multispec') _outputsens2 = ntt.efoscspec1Ddef.sensfunction( stdusedclean, 'spline3', 16, _interactive) ntt.util.updateheader( _outputsens2, 0, {'FILETYPE': [21212, 'sensitivity function']}) ntt.util.updateheader( _outputsens2, 0, {'TRACE1': [stdused, 'Originating file']}) if setup[0] == 'Gr13' and setup[1] == 'Free': if os.path.isfile(re.sub('Free', 'GG495', stdused)): print '\n### compute sensitivity function of grim 13 with blocking filter ' \ 'to correct for second order contamination \n' stdused2 = re.sub('Free', 'GG495', stdused) if not ntt.util.readkey3(ntt.util.readhdr(stdused2), 'STDNAME'): ntt.util.updateheader( stdused2, 0, { 'STDNAME': [ ntt.util.readkey3( ntt.util.readhdr(stdused), 'STDNAME'), '' ] }) atmofile2 = ntt.efoscspec1Ddef.telluric_atmo( stdused2) # atmo file2 stdusedclean2 = re.sub('_ex', '_clean', stdused2) ntt.util.delete(stdusedclean2) iraf.specred.sarith(input1=stdused2, op='/', input2=atmofile2, output=stdusedclean2, format='multispec') _outputsens3 = ntt.efoscspec1Ddef.sensfunction( stdusedclean2, 'spline3', 16, _interactive) ntt.util.updateheader( _outputsens3, 0, {'FILETYPE': [21212, 'sensitivity function']}) ntt.util.updateheader( _outputsens3, 0, {'TRACE1': [stdused2, 'Originating file']}) _outputsens2 = correctsens(_outputsens2, _outputsens3) if _outputsens2 not in outputfile: outputfile.append(_outputsens2) if _outputsens2 and tpe == 'obj': #################################################### for img in objectlist['obj'][setup]: # flux calibrate 2d images imgd = fluxcalib2d(img, _outputsens2) ntt.util.updateheader( imgd, 0, { 'FILETYPE': [22209, '2D wavelength and flux calibrated spectrum '] }) ntt.util.updateheader(imgd, 0, {'TRACE1': [img, 'Originating files']}) iraf.hedit(imgd, 'PRODCATG', delete='yes', update='yes', verify='no') if imgd not in outputfile: outputfile.append(imgd) #################################################### # flux calib in the standard way if not listatmo and listatmo0: listatmo = listatmo0[:] for _imgex in extracted: _airmass = ntt.util.readkey3(ntt.util.readhdr(_imgex), 'airmass') _exptime = ntt.util.readkey3(ntt.util.readhdr(_imgex), 'exptime') _imgf = re.sub('_ex.fits', '_f.fits', _imgex) ntt.util.delete(_imgf) qqq = iraf.specred.calibrate(input=_imgex, output=_imgf, sensiti=_outputsens2, extinct='yes', flux='yes', extinction=_extinctdir + _extinction, observatory=_observatory, airmass=_airmass, ignorea='yes', exptime=_exptime, fnu='no') hedvec = { 'SENSFUN': [_outputsens2, ''], 'FILETYPE': [22208, '1D wavelength and flux calibrated spectrum', ''], # 'SNR':[ntt.util.StoN(_imgf,50),'Average signal to noise ratio per pixel'], 'SNR': [ ntt.util.StoN2(_imgf, False), 'Average signal to noise ratio per pixel' ], 'BUNIT': ['erg/cm2/s/Angstrom', 'Physical unit of array values'], 'TRACE1': [_imgex, 'Originating file'], 'ASSON1': [ re.sub('_f.fits', '_2df.fits', _imgf), 'Name of associated file' ], 'ASSOC1': ['ANCILLARY.2DSPECTRUM', 'Category of associated file'] } ntt.util.updateheader(_imgf, 0, hedvec) if _imgf not in outputfile: outputfile.append(_imgf) if listatmo: atmofile = ntt.util.searcharc(_imgex, listatmo)[0] if atmofile: _imge = re.sub('_f.fits', '_e.fits', _imgf) ntt.util.delete(_imge) iraf.specred.sarith(input1=_imgf, op='/', input2=atmofile, output=_imge, w1='INDEF', w2='INDEF', format='multispec') try: iraf.imutil.imcopy(input=_imgf + '[*,1,2]', output=_imge + '[*,1,2]', verbose='no') except: pass try: iraf.imutil.imcopy(input=_imgf + '[*,1,3]', output=_imge + '[*,1,3]', verbose='no') except: pass try: iraf.imutil.imcopy(input=_imgf + '[*,1,4]', output=_imge + '[*,1,4]', verbose='no') except: pass if _imge not in outputfile: outputfile.append(_imge) ntt.util.updateheader( _imge, 0, { 'FILETYPE': [ 22210, '1D, wave, flux calib, telluric corr.' ] }) if atmofile not in outputfile: outputfile.append(atmofile) ntt.util.updateheader(_imge, 0, {'ATMOFILE': [atmofile, '']}) ntt.util.updateheader( _imge, 0, {'TRACE1': [_imgf, 'Originating file']}) imgin = _imge else: imgin = _imgf else: imgin = _imgf imgasci = re.sub('.fits', '.asci', imgin) ntt.util.delete(imgasci) iraf.onedspec(_doprint=0) iraf.onedspec.wspectext(imgin + '[*,1,1]', imgasci, header='no') if imgasci not in outputfile: outputfile.append(imgasci) print '\n### adding keywords for phase 3 ....... ' for img in outputfile: if str(img)[-5:] == '.fits': try: ntt.util.phase3header(img) # phase 3 definitions ntt.util.updateheader(img, 0, {'quality': ['Final', '']}) except: print 'Warning: ' + img + ' is not a fits file' try: if int(re.sub('\.', '', str(pyfits.__version__))[:2]) <= 30: aa = 'HIERARCH ' else: aa = '' except: aa = '' imm = pyfits.open(img, mode='update') hdr = imm[0].header if aa + 'ESO DPR CATG' in hdr: hdr.pop(aa + 'ESO DPR CATG') if aa + 'ESO DPR TECH' in hdr: hdr.pop(aa + 'ESO DPR TECH') if aa + 'ESO DPR TYPE' in hdr: hdr.pop(aa + 'ESO DPR TYPE') imm.flush() imm.close() print outputfile reduceddata = ntt.rangedata(outputfile) f = open( 'logfile_spec1d_' + str(reduceddata) + '_' + str(datenow) + '.raw.list', 'w') for img in outputfile: try: f.write(ntt.util.readkey3(ntt.util.readhdr(img), 'arcfile') + '\n') except: pass f.close() return outputfile, 'logfile_spec1d_' + str(reduceddata) + '_' + str( datenow) + '.raw.list'
import os # Delete some directories/files from previous runs. os.system("rm -rf login.cl pyraf database uparm") os.system("mkiraf") # Now load IRAF import pyraf.iraf as iraf # Load the packages we might need. iraf.noao(_doprint=0) iraf.onedspec(_doprint=0) iraf.twodspec(_doprint=0) iraf.apextract(_doprint=0) iraf.unlearn(iraf.apall) # The name of the science file. filename = 'vega_9.3narrow.fit' extracted_filename = 'vega_9.3narrow.ms.fits' calibrated_filename = 'vega_9.3narrow.calib.fits' # Delete previous results. os.system("rm "+extracted_filename+" "+calibrated_filename) # Make sure that the dispersion axis is in the header.
def extract_spectrum(targetdir, trace, arcspec, refspec, t_nsum, t_step, line, ylevel, interactive): """ Extract spectrum Must be in target directory. """ iraf.noao(_doprint=0) iraf.onedspec(_doprint=0) iraf.twodspec(_doprint=0) iraf.apextract(_doprint=0) basedir = '/data/lc585/WHT_20150331/OBS/' targetdir = os.path.join(basedir,targetdir,'Reduced') print 'Target directory is ' + targetdir print 'Extracting spectrum...' if os.path.exists( os.path.join(targetdir, 'imcomb.ms.fits') ): os.remove( os.path.join( targetdir, 'imcomb.ms.fits') ) print 'Removing file ' + os.path.join( targetdir, 'imcomb.ms.fits') # If can't fit trace use trace from nearby object if trace == 'no': dest = os.path.join(targetdir,'database') if not os.path.exists(dest): os.makedirs(dest) db = os.path.join(basedir,refspec,'Reduced','database','ap_data_lc585_WHT_20150331_OBS_'+refspec+'_Reduced_imcomb') shutil.copy(db,dest) iraf.apall.setParam('references',os.path.join(basedir,refspec,'Reduced','imcomb.fit')) # List of aperture reference images print 'Using trace from reference spectra ' + refspec # Since frame is averaged I think we need to scale down read nosie but gain will stay the same. names = [] for n in os.listdir(targetdir): if (n.endswith('.fit')) & (n.startswith('r')): names.append(n) nframes = float(len(names)) # Doesn't seem to work if I give it absolute path to input! iraf.apall.setParam('input','imcomb.fit') # List of input images iraf.apall.setParam('output','') # List of output spectra iraf.apall.setParam('apertur','') # Apertures iraf.apall.setParam('format','multispec') # Extracted spectra format iraf.apall.setParam('referen','') # List of aperture reference images iraf.apall.setParam('profile','') # List of aperture profile images iraf.apall.setParam('interac',interactive) # Run task interactively? iraf.apall.setParam('find','no') # Find apertures? iraf.apall.setParam('recente','no') # Recenter apertures? iraf.apall.setParam('resize','no') # Resize apertures? iraf.apall.setParam('edit','yes') # Edit apertures? iraf.apall.setParam('trace',trace) # Trace apertures? iraf.apall.setParam('fittrac',interactive) # Fit the traced points interactively? iraf.apall.setParam('extract','yes') # Extract spectra? iraf.apall.setParam('extras','yes') # Extract sky, sigma, etc.? iraf.apall.setParam('review',interactive) # Review extractions? iraf.apall.setParam('line',line) # Dispersion line iraf.apall.setParam('nsum',20) # Number of dispersion lines to sum or median # DEFAULT APERTURE PARAMETERS iraf.apall.setParam('lower',-5.) # Lower aperture limit relative to center iraf.apall.setParam('upper',5.) # Upper aperture limit relative to center iraf.apall.setParam('apidtab','') # Aperture ID table (optional) # DEFAULT BACKGROUND PARAMETERS # Background is now a constant at each wavelength iraf.apall.setParam('b_funct','chebyshev') # Background function iraf.apall.setParam('b_order',1) # Background function order iraf.apall.setParam('b_sampl','-10:-6,6:10') # Background sample regions iraf.apall.setParam('b_naver',-3) # Background average or median iraf.apall.setParam('b_niter',2) # Background rejection iterations iraf.apall.setParam('b_low_r',3.) # Background lower rejection sigma iraf.apall.setParam('b_high_',3.) # Background upper rejection sigma iraf.apall.setParam('b_grow',0.) # Background rejection growing radius # APERTURE CENTERING PARAMETERS iraf.apall.setParam('width',5.) # Profile centering width iraf.apall.setParam('radius',10.) # Profile centering radius iraf.apall.setParam('thresho',0.) # Detection threshold for profile centering # AUTOMATIC FINDING AND ORDERING PARAMETERS iraf.apall.setParam('nfind','') # Number of apertures to be found automatically iraf.apall.setParam('minsep',5.) # Minimum separation between spectra iraf.apall.setParam('maxsep',100000.) # Maximum separation between spectra iraf.apall.setParam('order','increasing') # Order of apertures # RECENTERING PARAMETERS iraf.apall.setParam('aprecen','') # Apertures for recentering calculation iraf.apall.setParam('npeaks','INDEF') # Select brightest peaks iraf.apall.setParam('shift','yes') # Use average shift instead of recentering? # RESIZING PARAMETERS iraf.apall.setParam('llimit','INDEF') # Lower aperture limit relative to center iraf.apall.setParam('ulimit','INDEF') # Upper aperture limit relative to center iraf.apall.setParam('ylevel',0.2) # Fraction of peak or intensity for automatic widt iraf.apall.setParam('peak','yes') # Is ylevel a fraction of the peak? iraf.apall.setParam('bkg','yes') # Subtract background in automatic width? iraf.apall.setParam('r_grow',0.) # Grow limits by this factor iraf.apall.setParam('avglimi','no') # Average limits over all apertures? # TRACING PARAMETERS iraf.apall.setParam('t_nsum',20) # Number of dispersion lines to sum iraf.apall.setParam('t_step', 20) # Tracing step iraf.apall.setParam('t_nlost',3) # Number of consecutive times profile is lost befo iraf.apall.setParam('t_funct','spline3') # Trace fitting function iraf.apall.setParam('t_order',2) # Trace fitting function order iraf.apall.setParam('t_sampl','*') # Trace sample regions iraf.apall.setParam('t_naver',1) # Trace average or median iraf.apall.setParam('t_niter',2) # Trace rejection iterations iraf.apall.setParam('t_low_r',3.) # Trace lower rejection sigma iraf.apall.setParam('t_high_',3.) # Trace upper rejection sigma iraf.apall.setParam('t_grow',0.) # Trace rejection growing radius # EXTRACTION PARAMETERS iraf.apall.setParam('backgro','none') # Background to subtract iraf.apall.setParam('skybox',1) # Box car smoothing length for sky iraf.apall.setParam('weights','variance') # Extraction weights (none|variance) iraf.apall.setParam('pfit','fit1d') # Profile fitting type (fit1d|fit2d) iraf.apall.setParam('clean','yes') # Detect and replace bad pixels? iraf.apall.setParam('saturat',300000.) # Saturation level # iraf.apall.setParam('readnoi',17.0) iraf.apall.setParam('readnoi',17./np.sqrt(nframes)) # Read out noise sigma (photons) iraf.apall.setParam('gain',4.) # Photon gain (photons/data number) iraf.apall.setParam('lsigma',4.) # Lower rejection threshold iraf.apall.setParam('usigma',4.) # Upper rejection threshold iraf.apall.setParam('nsubaps',1) # Number of subapertures per aperture iraf.apall.setParam('mode','q') # h = hidden, q = query, l = learn iraf.apall() # Now extract arc through same aperture for wavelength calibration print '\n' '\n' '\n' print 'Extracting Arc through same aperture...' if os.path.exists( os.path.join(targetdir,'aimcomb.fits')): os.remove( os.path.join(targetdir, 'aimcomb.fits') ) print 'Removing file ' + os.path.join(targetdir, 'aimcomb.fits') arcspec = os.path.join(basedir,arcspec) iraf.apall.setParam('input', arcspec) iraf.apall.setParam('output', 'aimcomb') iraf.apall.setParam('references', 'imcomb.fit' ) iraf.apall.setParam('recenter','no') iraf.apall.setParam('trace','no') iraf.apall.setParam('background','no') iraf.apall.setParam('interactive','no') iraf.apall() if os.path.exists( os.path.join(targetdir, 'imcomb+bkgd.ms.fits') ): os.remove( os.path.join( targetdir, 'imcomb+bkgd.ms.fits') ) print 'Removing file ' + os.path.join( targetdir, 'imcomb+bkgd.ms.fits') iraf.apall.setParam('input','imcomb+bkgd.fit') # List of input images iraf.apall.setParam('output','') # List of output spectra iraf.apall.setParam('referen','imcomb.fit') # List of aperture reference images iraf.apall.setParam('interac','yes') # Run task interactively? iraf.apall.setParam('find','yes') # Find apertures? iraf.apall.setParam('recenter','no') # Recenter apertures? iraf.apall.setParam('resize','no') # Resize apertures? iraf.apall.setParam('edit','yes') # Edit apertures? iraf.apall.setParam('trace','no') # Trace apertures? iraf.apall.setParam('fittrac',interactive) # Fit the traced points interactively? iraf.apall.setParam('extract','yes') # Extract spectra? iraf.apall.setParam('extras','yes') # Extract sky, sigma, etc.? iraf.apall.setParam('review','yes') # Review extractions? # DEFAULT BACKGROUND PARAMETERS # Background is now a constant at each wavelength iraf.apall.setParam('b_funct','chebyshev') # Background function iraf.apall.setParam('b_order',1) # Background function order iraf.apall.setParam('b_sampl','-10:-6,6:10') # Background sample regions iraf.apall.setParam('b_naver',-3) # Background average or median iraf.apall.setParam('b_niter',2) # Background rejection iterations iraf.apall.setParam('b_low_r',3.) # Background lower rejection sigma iraf.apall.setParam('b_high_',3.) # Background upper rejection sigma iraf.apall.setParam('b_grow',0.) # Background rejection growing radius # EXTRACTION PARAMETERS # before i wasn't dividing by the square root of the frames, but surely this must be true if I'm taking the average iraf.apall.setParam('backgro','median') # Background to subtract iraf.apall.setParam('skybox',1) # Box car smoothing length for sky iraf.apall.setParam('weights','variance') # Extraction weights (none|variance) iraf.apall.setParam('pfit','fit1d') # Profile fitting type (fit1d|fit2d) iraf.apall.setParam('clean','yes') # Detect and replace bad pixels? iraf.apall.setParam('saturat',300000.) # Saturation level # iraf.apall.setParam('readnoi',17.0) iraf.apall.setParam('readnoi',17.0/np.sqrt(nframes)) # Read out noise sigma (photons) iraf.apall.setParam('gain',4.) # Photon gain (photons/data number) iraf.apall.setParam('lsigma',4.) # Lower rejection threshold iraf.apall.setParam('usigma',4.) # Upper rejection threshold iraf.apall.setParam('nsubaps',1) # Number of subapertures per aperture iraf.apall() hdulist = fits.open(os.path.join(targetdir, 'imcomb+bkgd.ms.fits')) sigma = hdulist[0].data[3,0,:] hdulist.close() hdulist = fits.open(os.path.join(targetdir, 'imcomb.ms.fits'), mode='update') hdulist[0].data[2,0,:] = sigma hdulist.flush() hdulist.close() return None