def run_tlinear(loc, region, scol=True): """Runs ``IRAF/TLINEAR`` (linear fit) on data in file ``tcreate.tab``. Parameters: scol : {True, False} True by default. Set False if don't want to weight the fit by the deltaflux error. Returns: nothing Outputs: text file. The linear fit stored in ``<filtername>_<amp><outfilemark>_tlinear.dat``. text file. The parameters of the fit stored in ``<filtername>_<amp><outfilemark>_tlinear.hdr.dat`` """ if scol: iraf.tlinear(loc+'tcreate.tab', loc+'tlinear.tab', \ xcol='x', ycol='y', scol='yerror' ) else: iraf.tlinear(loc+'tcreate.tab', loc+'tlinear.tab', \ xcol='x', ycol='y') # Convert IRAF table to ascii file. iraf.tdump(loc+'tlinear.tab', \ datafile = loc + region + '_tlinear.dat', \ pfile = loc + region + '_tlinear.hdr.dat') # Delete the IRAF tables. os.remove(loc + 'tcreate.tab') os.remove(loc + 'tlinear.tab')
def getBgrd(tablename): iraf.tables() dumpfile = tablename + '_dump.txt' try: os.remove(dumpfile) except OSError: pass iraf.tdump(table=tablename, columns='INTENS', datafile=dumpfile) file = open(dumpfile, "r") lineList = file.readlines() lastLine = lineList[-1] lastLine = lastLine.replace('\t', '') lastLine = lastLine.replace('\s', '') lastLine = lastLine.replace('\n', '') bg = float(lastLine) file.close() os.remove(dumpfile) print(bg)
iraf.ellipse.geompar.step = 0.01 iraf.ellipse.geompar.linear = False iraf.ellipse.geompar.recenter = True # iraf.ellipse.geompar.saveParList(filename="ellipse.par") # samplepar iraf.ellipse.samplepar.nclip = 1 iraf.ellipse.samplepar.sdevice = "stdgraph" # iraf.ellipse.samplepar.saveParList(filename="ellipse.par") # magpar : zero point photometry iraf.ellipse.magpar.mag0 = 20.3 # ellipse parameters iraf.ellipse(input=input_filename, output=output_bin) iraf.tdump(table=output_bin, datafile=output_table, cdfile=output_cdf) # model image construction iraf.bmodel.unlearn() iraf.bmodel(table=output_bin, output=model_image) # subtraction image = fits.open(input_filename)[0].data model = fits.open(model_image)[0].data fn = lambda x: np.nanmean((image - x[0] * model - np.nanmedian(image))**2) res = minimize(fn, (0.1, ), method="Nelder-Mead") iraf.imarith.unlearn() iraf.imarith.operand1 = model_image
def getMeaningfulColumns(self, input, columns, output): ''' Uses IRAF task tdump for parsing columns from a table. ''' I.tdump(input, colum=columns, datafil=output)
elif pa > 90: pa = pa - 180.0 # iraf.ellipse.controlpar.minit = 10 # iraf.ellipse.controlpar.maxit = 100 # iraf.ellipse.controlpar.olthresh = 0.0 # iraf.ellipse(input=cur_dir+'tmp_V.fits',output=cur_dir+'tmp_V.tab',inter='no',x0=i,y0=j,ellip0=ellip,pa0=pa,sma0=thumb/10.0, \ # minsma=1,maxsma=thumb,linear='no',recenter='no',hcenter='yes',hellip='yes',hpa='yes',integrmode='median',refer=1.0, \ # zerolevel=0.0,mag0=22.5,nclip=0,step=0.3) iraf.ellipse(input=cur_dir+'tmp_V.fits',output=cur_dir+'tmp_V.tab',inter='no',x0=i,y0=j,ellip0=ellip,pa0=pa,sma0=thumb/10.0, \ minsma=1,maxsma=thumb,linear='no',recenter='yes',hcenter='no',hellip='no',hpa='no',integrmode='median',refer=1.0, \ zerolevel=0.0,mag0=22.5,nclip=0,step=0.3) iraf.tdump(table=cur_dir + 'tmp_V.tab', datafile='/Users/dhk/work/data/NGC_IC/ellipse/pa_ellip/' + name + '.txt', columns='@colnames.lis') copyfile(cur_dir + 'tmp_V.tab', '/Users/dhk/work/data/NGC_IC/ellipse/pa_ellip/' + name + '.tab') iraf.ellipse(input=work_dir + 'SHA/SHA_NGC_IC_LONG_mean/' + name + '.fits', output=cur_dir + 'tmp_I1.tab', inter='no', inellip=cur_dir + 'tmp_V.tab', mag0=21.5814) iraf.tdump(table=cur_dir + 'tmp_I1.tab', datafile='/Users/dhk/work/data/NGC_IC/ellipse/pa_ellip/' + name + '_I1.txt', columns='@colnames.lis') copyfile( cur_dir + 'tmp_I1.tab',
iraf.ellipse.controlpar.maxit = 100 # 9. Threshold for the object locator algorithm # By lowering this value, the locator become less strict. iraf.ellipse.controlpar.olthresh = 1.00000 # 10. Make sure the Interactive Mode is turned off iraf.ellipse.controlpar.interactive = "no" # Check and remove outputs from the previous Ellipse run, or Ellipse will report # error (Quite stupid!) if os.path.exists(outBin): os.remove(outBin) if os.path.exists(outTab): os.remove(outTab) if os.path.exists(outCdf): os.remove(outCdf) # Start the fitting iraf.ellipse(input=inputImg, output=outTab) # TODO: Demonstrate the direct photometry mode using input catalog # inBin = input_bin_file ## The inBin is a Binary result from previous Ellipse run, and the isophote ## stored in it will overwrite all the above settings. Ellipse will simply ## extract surface brightness profile using these isophote instead of doing any ## fitting # iraf.ellipse(input=inputImg, output=outBin, inellip=inBin) # The Ellipse output is a binary table file, which is very hard to deal with # "Dump" it into a nice ASCII table iraf.tdump(table=outBin, datafile=outTab, cdfile=outCdf) os.remove(outCdf)
if os.path.exists('tmp7.dqf'): os.remove('tmp7.dqf') hdu7 = fits.PrimaryHDU(betav_seg) hdu7.writeto('tmp7.fits') mask = betav_seg mask[np.isnan(mask)] = int(32) mask[np.where(mask != 32)] = int(0) hdu7pl = fits.PrimaryHDU(mask) hdu7pl.writeto('tmp7.dqf') #iraf.ellipse(input='tmp7.fits',output='tmp7.tab',inter='no',inellip=work_dir+'ellipse/pa_ellip/'+name+'_I1.tab',dqf='.c1h') iraf.ellipse(input='tmp7.fits',output='tmp7.tab',inter='no',x0=i,y0=j,dqf='.dqf') iraf.tdump(table='tmp7.tab',datafile=work_dir+'ellipse/pa_ellip/'+name+'_bv_pl9.txt',columns='@colnames.lis') if AV_fit: if os.path.exists('tmp.fits'): os.remove('tmp.fits') if os.path.exists('tmp1.fits'): os.remove('tmp1.fits') if os.path.exists('tmp2.fits'): os.remove('tmp2.fits') if os.path.exists('tmp3.fits'): os.remove('tmp3.fits') if os.path.exists('tmp4.fits'): os.remove('tmp4.fits') if os.path.exists('tmp5.fits'): os.remove('tmp5.fits')
## ====>>>> Constroi um modelo baseado no ellipse iraf.bmodel(table=tab, output=model) iraf.imarith(operand1=fich_comb, op="-", operand2=model, result=resid) ## ====>>>> Faz o grafico mag X R^(1/4) (perfil de de Vaucouleurs) # iraf.isoplot(input=tab, xaxis="RSMA", yaxis="INTENS") ### ------ Saida de uma tabela ascii (.txt) para ajuste em outro programa colunas = "SMA,RSMA,INTENS,INT_ERR,RMS,MAG,MAG_LERR,MAG_UERR" colunas_2 = [ 'SMA', 'RSMA', 'INTENS', 'INT_ERR', 'RMS', 'MAG', 'MAG_LERR', 'MAG_UERR' ] iraf.tdump(table=tab, datafile=fich4, columns=colunas) #ACABA AQUI data = pd.read_csv(fich4, sep="\s+", header=None) data.columns = colunas_2 data.to_csv(tabcsv) ### Apaga arquivos temporarios # os.remove(fich2) os.remove(fich4) os.remove(tab) print('Terminou. Veja os arquivos ', nome, ' Model e Resid.fits')