Beispiel #1
0
def test_orders(instr, instrument, mode, files, settings, mask):
    if len(files["orders"]) == 0:
        pytest.skip(f"No order definition files found for instrument {instrument}")

    files = files["orders"][0]
    order_img, _ = instr.load_fits(files, mode, mask=mask)
    settings = settings["orders"]

    orders, column_range = mark_orders(
        order_img,
        min_cluster=settings["min_cluster"],
        filter_size=settings["filter_size"],
        noise=settings["noise"],
        opower=settings["degree"],
        border_width=settings["border_width"],
        manual=False,
        plot=False,
    )

    assert isinstance(orders, np.ndarray)
    assert np.issubdtype(orders.dtype, np.floating)
    assert orders.shape[1] == settings["degree"] + 1

    assert isinstance(column_range, np.ndarray)
    assert np.issubdtype(column_range.dtype, np.integer)
    assert column_range.shape[1] == 2
    assert np.all(column_range >= 0)
    assert np.all(column_range <= order_img.shape[1])

    assert orders.shape[0] == column_range.shape[0]
Beispiel #2
0
def orders(instrument, mode, extension, files, settings, mask, output_dir):
    """Load or if necessary calculate the order traces

    Parameters
    ----------
    instrument : str
        instrument name
    mode : str
        observing mode
    extension : int
        fits data extension
    files : dict(str:str)
        calibration data files
    settings : dict(str:obj)
        settings for this run
    mask : array(bool)
        Bad pixel map
    output_dir : str
        output file directory

    Returns
    -------
    orders : array(float) of size (norders, ndegree+1)
        polynomial coefficients of the order tracing
    column_range : array(int) of size (norders, 2)
        valid columns that include traces/data
    """
    settings = settings["orders"]

    orderfile = os.path.join(output_dir, "test_orders.pkl")
    try:
        with open(orderfile, "rb") as file:
            orders, column_range = pickle.load(file)
    except FileNotFoundError:
        files = files["orders"][0]
        order_img, _ = util.load_fits(files,
                                      instrument,
                                      mode,
                                      extension,
                                      mask=mask)

        orders, column_range = mark_orders(
            order_img,
            min_cluster=settings["min_cluster"],
            filter_size=settings["filter_size"],
            noise=settings["noise"],
            opower=settings["degree"],
            border_width=settings["border_width"],
            manual=False,
            plot=False,
        )
        with open(orderfile, "wb") as file:
            pickle.dump((orders, column_range), file)
    return orders, column_range
Beispiel #3
0
def test_orders(instrument, mode, extension, files, settings, mask):
    """
    Test the order tracing for each test dataset

    Parameters
    ----------
    instrument : str
        Instrument Name
    mode : str
        Current Mode
    extension : int
        fits extension for that mode
    files : dict(str:str)
        dict of files, sorted by type
    settings : dict(str:obj)
        configuration settings of this run
    mask : array(bool) of size (n,)
        Bad pixel mask
    """

    files = files["orders"][0]
    order_img, _ = util.load_fits(files,
                                  instrument,
                                  mode,
                                  extension,
                                  mask=mask)
    settings = settings["orders"]

    orders, column_range = mark_orders(
        order_img,
        min_cluster=settings["min_cluster"],
        filter_size=settings["filter_size"],
        noise=settings["noise"],
        opower=settings["degree"],
        border_width=settings["border_width"],
        manual=False,
        plot=False,
    )

    assert isinstance(orders, np.ndarray)
    assert np.issubdtype(orders.dtype, np.floating)
    assert orders.shape[1] == settings["degree"] + 1

    assert isinstance(column_range, np.ndarray)
    assert np.issubdtype(column_range.dtype, np.integer)
    assert column_range.shape[1] == 2
    assert np.all(column_range >= 0)
    assert np.all(column_range <= order_img.shape[1])

    assert orders.shape[0] == column_range.shape[0]
Beispiel #4
0
def test_simple():
    img = np.full((100, 100), 1)
    img[45:56, :] = 100

    orders, column_range = mark_orders(
        img, manual=False, opower=1, plot=False, border_width=0
    )

    assert orders.shape[0] == 1
    assert np.allclose(orders[0], [0, 50])

    assert column_range.shape[0] == 1
    assert column_range[0, 0] == 0
    assert column_range[0, 1] == 100
Beispiel #5
0
def test_orders(instr, instrument, mode, files, settings, mask):
    if len(files["orders"]) == 0:
        pytest.skip(
            f"No order definition files found for instrument {instrument}")

    order_img, _ = combine_frames(files["orders"], instrument, mode, mask=mask)
    settings = settings["orders"]

    orders, column_range = mark_orders(
        order_img,
        min_cluster=settings["min_cluster"],
        min_width=settings["min_width"],
        filter_size=settings["filter_size"],
        noise=settings["noise"],
        opower=settings["degree"],
        degree_before_merge=settings["degree_before_merge"],
        regularization=settings["regularization"],
        closing_shape=settings["closing_shape"],
        border_width=settings["border_width"],
        manual=False,
        auto_merge_threshold=settings["auto_merge_threshold"],
        merge_min_threshold=settings["merge_min_threshold"],
        sigma=settings["split_sigma"],
        plot=False,
    )

    assert isinstance(orders, np.ndarray)
    assert np.issubdtype(orders.dtype, np.floating)
    assert orders.shape[1] == settings["degree"] + 1

    assert isinstance(column_range, np.ndarray)
    assert np.issubdtype(column_range.dtype, np.integer)
    assert column_range.shape[1] == 2
    assert np.all(column_range >= 0)
    assert np.all(column_range <= order_img.shape[1])

    assert orders.shape[0] == column_range.shape[0]
Beispiel #6
0
def test_parameters():
    img = np.full((100, 100), 1)
    img[45:56, :] = 100

    with pytest.raises(TypeError):
        mark_orders(None)
    with pytest.raises(TypeError):
        mark_orders(img, min_cluster="bla")
    with pytest.raises(TypeError):
        mark_orders(img, filter_size="bla")
    with pytest.raises(ValueError):
        mark_orders(img, filter_size=0)
    with pytest.raises(TypeError):
        mark_orders(img, noise="bla")
    with pytest.raises(TypeError):
        mark_orders(img, border_width="bla")
    with pytest.raises(ValueError):
        mark_orders(img, border_width=-1)
    with pytest.raises(TypeError):
        mark_orders(img, opower="bla")
    with pytest.raises(ValueError):
        mark_orders(img, opower=-1)