def test_parallel_search_no_cython(self, osgs): """Test the parallel resampling until the cython calls.""" from pyresample.gradient import parallel_gradient_search as pgs data = da.ones((100, 100), chunks=(25, 50)) src_x = da.ones((100, 100), chunks=(25, 50)) src_y = da.ones((100, 100), chunks=(25, 50)) dst_x = da.ones((180, 360), chunks=(90, 90)) dst_y = da.ones((180, 360), chunks=(90, 90)) def fake_gradient_resample_data(*args, **kwargs): assert(kwargs['method'] == 'bilinear') assert(args[0].shape == (1, 25, 50)) for arg in args[1:7]: assert(arg.shape == (25, 50)) for arg in args[7:]: assert(arg.shape == (90, 90)) return args[7][np.newaxis, :, :] osgs.side_effect = fake_gradient_resample_data res = pgs(data, src_x, src_y, dst_x, dst_y) res = res.compute(scheduler='single-threaded') assert(res.shape == (180, 360)) data = da.ones((3, 100, 100), chunks=(3, 25, 50)) def fake_gradient_resample_data(*args, **kwargs): assert(kwargs['method'] == 'bilinear') assert(args[0].shape == (3, 25, 50)) for arg in args[1:7]: assert(arg.shape == (25, 50)) for arg in args[7:]: assert(arg.shape == (90, 90)) return args[7][np.newaxis, :, :]
def test_parallel_resampling_no_blockwise(self, blockwise): """Test the parallel resampling until the blockwise call.""" from pyresample.gradient import parallel_gradient_search as pgs data = da.ones((100, 100), chunks=(25, 50)) src_x = da.ones((100, 100), chunks=(25, 50)) src_y = da.ones((100, 100), chunks=(25, 50)) dst_x = da.ones((180, 360), chunks=(90, 90)) dst_y = da.ones((180, 360), chunks=(90, 90)) def fake_blockwise(*args, **kwargs): return args[2] blockwise.side_effect = fake_blockwise res = pgs(data, src_x, src_y, dst_x, dst_y) assert(res.shape == (25, 50))
def test_parallel_search_no_blocks(self, grd): """Test the parallel resampling until the blocked calls.""" from pyresample.gradient import parallel_gradient_search as pgs data = da.ones((100, 100), chunks=(25, 50)) src_x = da.ones((100, 100), chunks=(25, 50)) src_y = da.ones((100, 100), chunks=(25, 50)) dst_x = da.ones((180, 360), chunks=(90, 90)) dst_y = da.ones((180, 360), chunks=(90, 90)) def fake_gradient_resample_data(*args, **kwargs): assert(kwargs['method'] == 'bilinear') return args[7][np.newaxis, :, :, np.newaxis] grd.side_effect = fake_gradient_resample_data res = pgs(data, src_x, src_y, dst_x, dst_y) res = res.compute(scheduler='single-threaded') assert(res.shape == (180, 360))