Beispiel #1
0
 def test_norotation_yaml(self):
     """No rotation specified in yaml format."""
     from pyresample.area_config import load_area
     yamlDef = """regionB:
       description: regionB
       projection:
         a: 6378137.0
         b: 6378137.0
         lon_0: -34
         proj: merc
         x_0: 0
         y_0: 0
         k_0: 1
       shape:
         height: 548
         width: 800
       area_extent:
         lower_left_xy: [-7761424.714818418, -4861746.639279127]
         upper_right_xy: [11136477.43264252, 8236799.845095873]
       units: m"""
     with NamedTemporaryFile(mode="w", suffix='.yaml', delete=False) as f:
         f.write(yamlDef)
     test_area = load_area(f.name, 'regionB')
     self.assertEqual(test_area.rotation, 0)
     os.remove(f.name)
Beispiel #2
0
 def test_norotation_yaml(self):
     """No rotation specified in yaml format."""
     from pyresample.area_config import load_area
     yamlDef = """regionB:
       description: regionB
       projection:
         a: 6378137.0
         b: 6378137.0
         lon_0: -34
         proj: merc
         x_0: 0
         y_0: 0
         k_0: 1
       shape:
         height: 548
         width: 800
       area_extent:
         lower_left_xy: [-7761424.714818418, -4861746.639279127]
         upper_right_xy: [11136477.43264252, 8236799.845095873]
       units: m"""
     with NamedTemporaryFile(mode="w", suffix='.yaml', delete=False) as f:
         f.write(yamlDef)
     test_area = load_area(f.name, 'regionB')
     self.assertEqual(test_area.rotation, 0)
     os.remove(f.name)
Beispiel #3
0
def get_sectors_from_yamls(sectorfnames, sectornames):
    ''' Get AreaDefinition objects with custom "sector_info" dictionary from YAML area definition

    Args:
        sectorfnames (list) : list of string full paths to YAML area definition files
        sectornames (list) : list of strings of desired sector names to retrieve from YAML files

    Returns:
        (list) : List of pyresample AreaDefinition objects, with arbitrary additional YAML
                    entries added as attributes to each area def (this is to allow specifying
                    "sector_info" metadata dictionary within the YAML file)
    '''
    from pyresample import load_area
    import yaml
    area_defs = []
    for sectorfname in sectorfnames:
        with open(sectorfname) as sectorfobj:
            ydict = yaml.safe_load(sectorfobj)
        for sectorname in sectornames:
            if sectorname in ydict.keys():
                try:
                        area_def = load_area(sectorfname, sectorname)
                except TypeError:
                        area_def = create_areadefinition_from_yaml(sectorfname,sectorname)
                for key in ydict[sectorname].keys():
                    if not hasattr(area_def, key) and key not in ['description', 'projection']:
                        area_def.__setattr__(key, ydict[sectorname][key])
                area_defs += [area_def]
    return area_defs
Beispiel #4
0
    def test_load_area(self):
        from pyresample import load_area
        ease_nh = load_area(os.path.join(os.path.dirname(__file__), 'test_files', 'areas.cfg'), 'ease_nh')
        nh_str = """Area ID: ease_nh
Description: Arctic EASE grid
Projection ID: ease_nh
Projection: {'a': '6371228.0', 'lat_0': '90.0', 'lon_0': '0.0', 'proj': 'laea', 'units': 'm'}
Number of columns: 425
Number of rows: 425
Area extent: (-5326849.0625, -5326849.0625, 5326849.0625, 5326849.0625)"""
        self.assertEqual(nh_str, ease_nh.__str__())
Beispiel #5
0
    def test_load_area(self):
        from pyresample import load_area
        ease_nh = load_area(os.path.join(os.path.dirname(__file__), 'test_files', 'areas.cfg'), 'ease_nh')
        nh_str = """Area ID: ease_nh
Description: Arctic EASE grid
Projection ID: ease_nh
Projection: {'a': '6371228.0', 'lat_0': '90.0', 'lon_0': '0.0', 'proj': 'laea', 'units': 'm'}
Number of columns: 425
Number of rows: 425
Area extent: (-5326849.0625, -5326849.0625, 5326849.0625, 5326849.0625)"""
        self.assertEqual(nh_str, ease_nh.__str__())
Beispiel #6
0
 def test_norotation_legacy(self):
     """No rotation specified in legacy format."""
     from pyresample.area_config import load_area
     legacyDef = """REGION: regionB {
     NAME:          regionB
     PCS_ID:        regionB
     PCS_DEF:       proj=merc, lon_0=-34, k=1, x_0=0, y_0=0, a=6378137, b=6378137
     XSIZE:         800
     YSIZE:         548
     AREA_EXTENT:   (-7761424.714818418, -4861746.639279127, 11136477.43264252, 8236799.845095873)
     };"""
     with NamedTemporaryFile(mode="w", suffix='.cfg', delete=False) as f:
         f.write(legacyDef)
     test_area = load_area(f.name, 'regionB')
     self.assertEqual(test_area.rotation, 0)
     os.remove(f.name)
Beispiel #7
0
 def test_norotation_legacy(self):
     """No rotation specified in legacy format."""
     from pyresample.area_config import load_area
     legacyDef = """REGION: regionB {
     NAME:          regionB
     PCS_ID:        regionB
     PCS_DEF:       proj=merc, lon_0=-34, k=1, x_0=0, y_0=0, a=6378137, b=6378137
     XSIZE:         800
     YSIZE:         548
     AREA_EXTENT:   (-7761424.714818418, -4861746.639279127, 11136477.43264252, 8236799.845095873)
     };"""
     with NamedTemporaryFile(mode="w", suffix='.cfg', delete=False) as f:
         f.write(legacyDef)
     test_area = load_area(f.name, 'regionB')
     self.assertEqual(test_area.rotation, 0)
     os.remove(f.name)
Beispiel #8
0
    def test_load_area(self):
        from pyresample import load_area
        ease_nh = load_area(
            os.path.join(os.path.dirname(__file__), 'test_files', 'areas.cfg'),
            'ease_nh')
        # pyproj 2.0+ adds some extra parameters
        projection = ("{'R': '6371228', 'lat_0': '90', 'lon_0': '0', "
                      "'no_defs': 'None', 'proj': 'laea', 'type': 'crs', "
                      "'units': 'm', 'x_0': '0', 'y_0': '0'}")
        nh_str = """Area ID: ease_nh
Description: Arctic EASE grid
Projection ID: ease_nh
Projection: {}
Number of columns: 425
Number of rows: 425
Area extent: (-5326849.0625, -5326849.0625, 5326849.0625, 5326849.0625)""".format(
            projection)
        self.assertEqual(nh_str, ease_nh.__str__())

def get_time_start_end(isat, ds):
    if isat == 0:
        orbit_time = np.datetime64(
            ds.attrs['time_coverage_start']) - np.timedelta64(
                24, 'h')  #changed to 24 hr for sss
        orbit_time2 = np.datetime64(
            ds.attrs['time_coverage_end']) + np.timedelta64(24, 'h')
    if isat == 1:
        orbit_time = ds.time[0].data - np.timedelta64(12, 'h')
        orbit_time2 = ds.time[-1].data + np.timedelta64(12, 'h')
    return orbit_time, orbit_time2


area_def = load_area('areas.cfg', 'pc_world')
rlon = np.arange(-180, 180, .1)
rlat = np.arange(90, -90, -.1)

#for name in data_dict:
for iname in range(input_iusv_start,
                   input_iusv_end):  #g,name in enumerate(data_dict):

    area_def = load_area('areas.cfg', 'pc_world')
    rlon = np.arange(-180, 180, .1)
    rlat = np.arange(90, -90, -.1)

    for isat in range(1, 2):

        ds_usv, name_usv = read_one_usv(files[iname])
Beispiel #10
0
def run(ipath,
        ifile,
        opath,
        dnts,
        satzs,
        year,
        month,
        dataset,
        chunksize=100000):
    # if dnts is single string convert to list
    if isinstance(dnts, str):
        dnts = [dnts]

    # if satzs is single string/int/float convert to list
    if isinstance(satzs, str) or isinstance(satzs, int) or isinstance(
            satzs, float):
        satzs = [satzs]

    if dataset not in ['CCI', 'CLAAS3']:
        raise Exception('Dataset {} not available!'.format(dataset))

    ofile_cma = 'CMA_SEVIRI_CALIOP_{}{}_DNT-{}_SATZ-{}.png'
    ofile_cph = 'CPH_SEVIRI_CALIOP_{}{}_DNT-{}_SATZ-{}.png'
    ofile_ctth = 'CTTH_SEVIRI_CALIOP_{}{}_DNT-{}_SATZ-{}.png'
    ofile_scat = 'SCATTER_SEVIRI_CALIOP_{}{}_DNT-{}_SATZ-{}.png'

    # iterate over satzen limitations
    for satz_lim in satzs:

        # if satz_lim list item is string convert it to float
        if satz_lim is not None:
            if isinstance(satz_lim, str):
                try:
                    satz_lim = float(satz_lim)
                except ValueError:
                    msg = 'Cannot convert {} to float'
                    raise Exception(msg.format(satz_lim))

        for dnt in dnts:

            dnt = dnt.upper()
            if dnt not in ['ALL', 'DAY', 'NIGHT', 'TWILIGHT']:
                raise Exception('DNT {} not recognized'.format(dnt))

            # set output filenames for CPH and CMA plot
            ofile_cma = ofile_cma.format(year, month, dnt, satz_lim)
            ofile_cph = ofile_cph.format(year, month, dnt, satz_lim)
            ofile_ctth = ofile_ctth.format(year, month, dnt, satz_lim)
            ofile_scat = ofile_scat.format(year, month, dnt, satz_lim)

            # get matchup data
            data, latlon = get_collocated_file_info(os.path.join(ipath, ifile),
                                                    chunksize, dnt, satz_lim,
                                                    dataset)

            adef = load_area('areas.yaml', 'pc_world')

            # for each input pixel get target pixel index
            resampler = BucketResampler(adef, latlon['lon'], latlon['lat'])
            idxs = resampler.idxs

            # get output grid size/lat/lon
            out_size = adef.size
            lon, lat = adef.get_lonlats()

            # do validation
            cma_scores = do_cma_validation(data, adef, out_size, idxs)
            cph_scores = do_cph_validation(data, adef, out_size, idxs)
            ctth_scores = do_ctth_validation(data, resampler, thrs=10)

            # get crs for plotting
            crs = adef.to_cartopy_crs()

            # get cos(lat) filed for weighted average on global regular grid
            cosfield = get_cosfield(lat)

            # do plotting
            make_plot(cma_scores, os.path.join(opath, ofile_cma), crs, dnt,
                      'CMA', cosfield)
            make_plot(cph_scores, os.path.join(opath, ofile_cph), crs, dnt,
                      'CPH', cosfield)
            make_plot_CTTH(ctth_scores, os.path.join(opath, ofile_ctth), crs,
                           dnt, 'CTTH', cosfield)
            make_scatter(data, os.path.join(opath, ofile_scat), dnt, dataset)
def run(opath,
        year,
        month,
        dataset,
        ifilepath_calipso=None,
        ifilepath_amsr=None,
        ifilepath_dardar=None,
        satzs=[None],
        dnts=['ALL', 'DAY', 'NIGHT', 'TWILIGHT'],
        chunksize=100000,
        plot_area='pc_world',
        FILTER_STRATOSPHERIC_CLOUDS=False):
    """
    Main function to be called in external script to run atrain_plot.

    opath (str):             Path where figures should be saved.
    year (str):              String of year.
    month (str):             String of month.
    dataset (str):           Dataset validated: Available: CCI, CLAAS.
    ifilepath_calipso (str): Path to CALIPSO HDF5 atrain_match matchup file.
    ifilepath_amsr (str):    Path to CALIPSO HDF5 atrain_match matchup file.
    ifilepath_dardar (str):  Path to CALIPSO HDF5 atrain_match matchup file.
    satzs (list):            List of satellite zenith limitations to be processed. Use
                             [None] if no limitation required.
    dnts (list):             List of illumination scenarios to be processed.
                             Available: ALL, DAY, NIGHT, TWILIGHT
    chunksize (int):         Size of data chunks to reduce memory usage.
    plot_area (str):         Name of area definition in areas.yaml file to be used.
    FILTER_STRATOSPHERIC_CLOUDS(bool): filter calipso data with CTH>tropopause height
    """

    global filter_stratospheric
    filter_stratospheric = FILTER_STRATOSPHERIC_CLOUDS

    if ifilepath_calipso is None and ifilepath_amsr is None and ifilepath_dardar is None:
        raise Exception(
            'All input files (CALIOP/AMSR/DARDAR) are None. Not running validation!'
        )

    _print_opts(ifilepath_calipso, ifilepath_amsr, ifilepath_dardar, opath,
                dnts, satzs, dataset, filter_stratospheric)

    # if dnts is single string convert to list
    if isinstance(dnts, str):
        dnts = [dnts]

    # if satzs is single string/int/float convert to list
    if isinstance(satzs, str) or isinstance(satzs, int) or isinstance(
            satzs, float):
        satzs = [satzs]

    if dataset not in ['CCI', 'CLAAS']:
        raise Exception('Dataset {} not available!'.format(dataset))

    # define plotting area
    module_path = os.path.dirname(__file__)
    adef = load_area(os.path.join(module_path, 'areas.yaml'), plot_area)

    # get output grid size/lat/lon
    out_size = adef.size
    lon, lat = adef.get_lonlats()

    # get crs for plotting
    crs = adef.to_cartopy_crs()

    ofile_cma = 'CMA_{}_CALIOP_{}{}_DNT-{}_SATZ-{}.png'
    ofile_cph = 'CPH_{}_CALIOP_{}{}_DNT-{}_SATZ-{}.png'
    ofile_ctth = 'CTTH_{}_CALIOP_{}{}_DNT-{}_SATZ-{}.png'
    ofile_scat = 'CTX_SCATTER_{}_CALIOP_{}{}_DNT-{}_SATZ-{}.png'

    # iterate over satzen limitations
    for satz_lim in satzs:
        # if satz_lim list item is string convert it to float
        if satz_lim is not None:
            if isinstance(satz_lim, str):
                try:
                    satz_lim = float(satz_lim)
                except ValueError:
                    msg = 'Cannot convert {} to float'
                    raise Exception(msg.format(satz_lim))

        print('------------- SATZ = {} -------------'.format(satz_lim))

        for dnt in dnts:

            dnt = dnt.upper()
            if dnt not in ['ALL', 'DAY', 'NIGHT', 'TWILIGHT']:
                raise Exception('DNT {} not recognized'.format(dnt))

            print('---------------------------')
            print('DNT = {}'.format(dnt))
            print('---------------------------')

            if ifilepath_calipso is not None:
                # set output filenames for CPH and CMA plot
                ofile_cma_tmp = ofile_cma.format(dataset, year, month, dnt,
                                                 satz_lim)
                ofile_cph_tmp = ofile_cph.format(dataset, year, month, dnt,
                                                 satz_lim)
                ofile_ctth_tmp = ofile_ctth.format(dataset, year, month, dnt,
                                                   satz_lim)
                ofile_scat_tmp = ofile_scat.format(dataset, year, month, dnt,
                                                   satz_lim)

                # get matchup data
                data, latlon = _get_calipso_matchup_file_content(
                    ifilepath_calipso, chunksize, dnt, satz_lim, dataset)

                # for each input pixel get target pixel index
                resampler = BucketResampler(adef, latlon['lon'], latlon['lat'])
                idxs = resampler.idxs

                # do validation
                cma_scores = _do_cma_cph_validation(data, adef, out_size, idxs,
                                                    'cma')
                cph_scores = _do_cma_cph_validation(data, adef, out_size, idxs,
                                                    'cph')
                ctth_scores = _do_ctth_validation(data,
                                                  adef,
                                                  out_size,
                                                  idxs,
                                                  resampler,
                                                  thrs=10)

                # get cos(lat) filed for weighted average on global regular grid
                cosfield = _get_cosfield(lat)

                # do plotting
                mp.make_plot_cma_cph(cma_scores,
                                     os.path.join(opath, ofile_cma_tmp), crs,
                                     dnt, 'CMA', cosfield)
                mp.make_plot_cma_cph(cph_scores,
                                     os.path.join(opath, ofile_cph_tmp), crs,
                                     dnt, 'CPH', cosfield)
                mp.make_plot_CTTH(ctth_scores,
                                  os.path.join(opath, ofile_ctth_tmp), crs,
                                  dnt, 'CTTH', cosfield)
                scat.make_scatter_ctx(data,
                                      os.path.join(opath, ofile_scat_tmp), dnt,
                                      dataset)

    if ifilepath_amsr is not None:
        # LWP plots
        amsr_lwp, imager_lwp, amsr_lat, amsr_lon = ga.read_amsr_lwp(
            ifilepath_amsr, dataset)

        ofile_lwp = 'LWP_{}_AMSR2_{}{}.png'.format(dataset, year, month)
        ofile_lwp_scatter = 'LWP_SCATTER_{}_AMSR2_{}{}.png'.format(
            dataset, year, month)

        results = _process_cer_or_lwp_or_iwp(amsr_lwp, imager_lwp, amsr_lat,
                                             amsr_lon, adef, 'AMSR2 LWP',
                                             dataset, chunksize)

        mp.make_plot_lwp(results, crs, os.path.join(opath, ofile_lwp))
        scat.make_scatter_lwp(amsr_lwp, imager_lwp,
                              os.path.join(opath, ofile_lwp_scatter))

    if ifilepath_dardar is not None:
        # IWP plots
        dardar_iwp, imager_iwp, dardar_lat, dardar_lon = gd.read_dardar_iwp(
            ifilepath_dardar, dataset)

        ofile_iwp = 'IWP_{}_DARDAR_{}{}.png'.format(dataset, year, month)
        ofile_iwp_scatter = 'IWP_SCATTER_{}_DARDAR_{}{}.png'.format(
            dataset, year, month)

        results = _process_cer_or_lwp_or_iwp(dardar_iwp, imager_iwp,
                                             dardar_lat, dardar_lon, adef,
                                             'DARDAR IWP', dataset, chunksize)

        mp.make_plot_iwp(results, crs, os.path.join(opath, ofile_iwp))
        scat.make_scatter_iwp(dardar_iwp, imager_iwp,
                              os.path.join(opath, ofile_iwp_scatter))

        # CER plots
        dardar_cer, imager_cer, dardar_lat, dardar_lon = gd.read_dardar_cer(
            ifilepath_dardar, dataset)

        ofile_cer = 'CER_{}_DARDAR_{}{}.png'.format(dataset, year, month)
        ofile_cer_scatter = 'CER_SCATTER_{}_DARDAR_{}{}.png'.format(
            dataset, year, month)

        results = _process_cer_or_lwp_or_iwp(dardar_cer, imager_cer,
                                             dardar_lat, dardar_lon, adef,
                                             'DARDAR CER', dataset, chunksize)

        mp.make_plot_cer(results, crs, os.path.join(opath, ofile_cer))
        scat.make_scatter_cer(dardar_cer, imager_cer,
                              os.path.join(opath, ofile_cer_scatter))
Beispiel #12
0
        end_time=datetime(2021, 7, 25, 11, 25),
        base_dir=sen3_data_l2,
        reader='olci_l2',
        sensor='olci',
    )
    """ Create Scene object """
    scn = Scene(filenames=filenames)
    """ Load selected datasets 
        Available OLCI Level 2 datasets are:
            'chl_nn.nc','chl_oc4me.nc',
            'iop_nn.nc','iwv.nc','par.nc','trsp.nc','tsm_nn.nc','w_aer.nc',
            'Oa01_reflectance.nc','Oa02_reflectance.nc','Oa03_reflectance.nc','Oa04_reflectance.nc',
            'Oa05_reflectance.nc','Oa06_reflectance.nc','Oa07_reflectance.nc','Oa08_reflectance.nc',
            'Oa09_reflectance.nc','Oa10_reflectance.nc','Oa11_reflectance.nc','Oa12_reflectance.nc',
            'Oa16_reflectance.nc','Oa17_reflectance.nc','Oa18_reflectance.nc','Oa21_reflectance.nc',
            'wqsf.nc'
    """
    datasets = ['Oa08', 'Oa06', 'chl_nn', 'chl_oc4me', 'mask']
    scn.load(datasets)

    my_area = load_area(
        os.path.join(settings.base_directory, 'etc/areas/local_areas.yaml'),
        'baws300_sweref99tm')
    scn = scn.resample(my_area, radius_of_influence=800)
    """ Chlorophyll data are stored as logarithmic values. Convert to real values: """
    scn['chl_nn'] = np.power(10, scn['chl_nn'])

    plt.imshow(scn['chl_nn'])
    plt.colorbar()
    plt.clim(0, 10)
    def __call__(self, message):

        urlobj = urlparse(message.data['uri'])

        if 'start_time' in message.data:
            start_time = message.data['start_time']
        else:
            raise InconsistentMessage("No start time in message!")

        if message.data['instruments'] == self.instrument:
            path, fname = os.path.split(urlobj.path)
            LOG.debug("path " + str(path) + " filename = " + str(fname))
            instrument = str(message.data['instruments'])
            LOG.debug("Instrument %r supported!", instrument)
            platform_name = METOPS.get(message.data['satellite'],
                                       message.data['satellite'])
            filepath = os.path.join(path, fname)
        else:
            LOG.debug("Scene is not supported")
            raise SceneNotSupported("platform and instrument: " +
                                    str(message.data['platform_name']) + " " +
                                    str(message.data['instruments']))

        if 'end_time' in message.data:
            end_time = message.data['end_time']
        else:
            LOG.warning("No end time in message!")
            end_time = start_time + timedelta(seconds=self.passlength_seconds)
            LOG.info("End time set to: %s", str(end_time))

        # Check that the input file really exists:
        if not os.path.exists(filepath):
            #LOG.error("File %s does not exist. Don't do anything...", filepath)
            raise IOError("File %s does not exist. Don't do anything...",
                          filepath)

        LOG.info("Sat and Instrument: %s %s", platform_name, instrument)

        if not isinstance(self.tle_dirs, list):
            tle_dirs = [self.tle_dirs]
        tle_files = []
        for tledir in tle_dirs:
            tle_files = tle_files + glob(
                os.path.join(tledir, globify(self.tlefilename)))

        tlep = Parser(self.tlefilename)

        time_thr = timedelta(days=5)
        utcnow = datetime.utcnow()
        valid_tle_file = None
        for tlefile in tle_files:
            fname = os.path.basename(tlefile)
            res = tlep.parse(fname)
            dtobj = res['time']

            delta_t = abs(utcnow - dtobj)
            if delta_t < time_thr:
                time_thr = delta_t
                valid_tle_file = tlefile

        if not valid_tle_file:
            raise NoValidTles("Failed finding a valid tle file!")
        else:
            LOG.debug("Valid TLE file: %s", valid_tle_file)

        if not isinstance(self.areaids, list):
            self.areaids = [self.areaids]
        inside = False

        for areaid in self.areaids:
            area_def = load_area(self.area_def_file, areaid)
            inside = self.granule_inside_area(start_time, end_time,
                                              platform_name, area_def,
                                              valid_tle_file)
            if inside:
                return True

        return False
Beispiel #14
0
import os
import sys
import numpy as np
import xarray as xr
from pyresample import image, geometry, load_area, save_quicklook, SwathDefinition, area_def2basemap
from pyresample.geometry import GridDefinition
from pyresample.kd_tree import resample_nearest
from scipy import spatial
from read_routines import read_all_usv, get_filelist_slstr_l2p,get_orbital_data_slstr_l2p,rectangle_overlap


# Area for PyResample
# -------------------
'''some definitions'''
area_def = load_area('areas.cfg', 'pc_world_1km')
rlon = np.arange(-180, 180, .01)
rlat = np.arange(90, -90, -.01)

# Enter paths etc
# ---------------
# input_iusv_start = int(input("Enter start cruise processing number 0-10: "))
# input_iusv_end = int(input("Enter stop cruise processing number 0-10: "))
# adir_usv = str(input("Enter directory for USV data: "))
# adir_l1r = str(input("Enter directory for L1R data: "))

input_iusv_start = 0
input_iusv_end = 1
# Path where matchup files will be saved:
adir_out = '/data/users/ssk/saildrone_data/matchup_SLSTR/'
# Path pattern to select campaigns (Enter full path if you want one file):
Beispiel #15
0
#        YSIZE:         548
#        ROTATION:      -45
#        AREA_EXTENT:   (-7761424.714818418, -4861746.639279127, 11136477.43264252, 8236799.845095873)
#};

#REGION: world_plat_5400_2700 {
#        NAME:           world_plat_5400_2700
#        PCS_ID:         world_plat_5400_2700
#        PCS_DEF:        proj=eqc,ellps=WGS84
#        XSIZE:          5400
#        YSIZE:          2700
#        AREA_EXTENT:    (-20037508.342789244, -10018754.171394622, 20037508.342789244, 10018754.171394622)
#};

bkg_file = "world.topo.small.png"
outfile = 'regionB.jpg'
background = Image.open(bkg_file)
#area_bkg = load_area('/opt/users/cll/PyTroll/etc/areas.def', 'world_plat_5400_2700')
#area_target = load_area('/opt/users/cll/PyTroll/etc/areas.def', 'regionB')
area_bkg = load_area(
    '/opt/users/cll/official/PyTroll/bluemarble-pyresample/areas.yaml',
    'world_plat_5400_2700')
area_target = load_area(os.path.join(CONFIG_PATH, "areas.def"),
                        'EuropeCanaryS95')

data = background.split()
data = np.dstack((np.array(data[0]), np.array(data[1]), np.array(data[2])))
nn = image.ImageContainerNearest(data, area_bkg, radius_of_influence=50000)
area_con_quick = nn.resample(area_target)
scipy.misc.imsave(outfile, area_con_quick.image_data)
Beispiel #16
0
# https://pyresample.readthedocs.org/en/latest/plot.html#displaying-data-quickly

import numpy as np
import matplotlib.pyplot as plt
import pyresample as pr

lons = np.zeros(1000)
tb37v = np.arange(1000)
#lats = np.arange(-80, -90, -0.01)                                   # orginal example  -> shows north pole
#area_def = pr.utils.load_area('../cfg_test/areas.def', 'ease_sh')   # orginal example  -> shows north pole
lats = np.arange(80, 90,
                 0.01)  # ??? need to use positive lats for south pole ???
area = 'ease_nh'
#area="EuropeCanary95"  # this does not produce correct result, shows SEVIRI full disk projection for blue marble !!!
area_def = pr.load_area('/data/OWARNA/hau/pytroll/cfg_test/areas.def',
                        area)  # ??? need to use nh to show south pole ???

swath_def = pr.geometry.SwathDefinition(lons, lats)
result = pr.kd_tree.resample_nearest(swath_def,
                                     tb37v,
                                     area_def,
                                     radius_of_influence=20000,
                                     fill_value=None)

bmap = pr.plot.area_def2basemap(area_def)
bmng = bmap.bluemarble()
col = bmap.imshow(result, origin='upper')

filename = 'test_basemap_' + area + '.png'
plt.savefig('./' + filename, bbox_inches='tight')
print("display " + filename + " &")