Beispiel #1
0
def main_EIV_single_from_template(myfilename, template_path):
    # x_test,y_test,e_test,t_test = make_epochs_EIV(myfilename, chnames, bandpass = (1.0,20.0), filtre_order = 2 ,delta=0.6, target=[2], nontarget=[1])

    centroids_train = np.load(template_path + 'Centroids_List.npy')
    Covmats_Dict = np.load(template_path + 'Covmats_Dict.npy')
    Covmats_Dict = Covmats_Dict.item()
    chnames = Covmats_Dict['channel names']

    ERP_train = np.load(template_path + 'ERP_Array.npy')
    erp_train = ERPCovariances(estimator='cov')
    erp_train.P = ERP_train
    # X_test = erp_train.transform(x_test)

    r_TNT_mu_List = np.load(template_path + 'rTNT_mu.npy')
    r_TNT_var_List = np.load(template_path + 'rTNT_var.npy')

    data, labels, event, target = get_data_from_csv_EIV(myfilename=myfilename,
                                                        chnames=chnames)

    mean, var = generic_test_loop(data,
                                  labels,
                                  event,
                                  ERP_train,
                                  centroids_train,
                                  r_TNT_mu_List,
                                  r_TNT_var_List,
                                  column_number=7,
                                  nb_repetitions=4,
                                  items_list=[1, 2, 3, 4, 5, 6, 7],
                                  visu=False,
                                  flashmode='EIV')

    return mean, var
Beispiel #2
0
def distribution_single_from_template(test_sub, test_sess, template_path,
                                      database):

    x_test, y_test, e_test, t_test, _, _ = database.subjects[
        test_sub].get_data([test_sess])

    ERP_train = np.load(template_path + 'ERP_Array.npy')
    erp_train = ERPCovariances(estimator='cov')
    erp_train.P = ERP_train
    X_test = erp_train.transform(x_test)

    centroids_train = np.load(template_path + 'Centroids_List.npy')

    erp_train = ERPCovariances(estimator='cov')
    erp_train.P = ERP_train

    r_TNT_test = predict_R_TNT(X=X_test, centroids_list=centroids_train)

    return r_TNT_test, y_test
Beispiel #3
0
def test_from_cross_template_P300(template_path,
                                  subject_path,
                                  test_chnames,
                                  flashmode='RoCo',
                                  nb_targets=180,
                                  visu=False):
    T = 0
    NT = 1

    ERP = np.load(template_path + 'ERP_Array.npy')

    Centroids_List = np.load(template_path + 'Centroids_List.npy')

    mu_TNT = np.load(template_path + 'rTNT_mu.npy')
    sigma_TNT = np.load(template_path + 'rTNT_var.npy')

    data, labels, event = get_data_from_csv_EIV(
        myfilename=subject_path + '-signals.csv',
        markersfile=subject_path + 'markers.csv',
        chnames=test_chnames)

    erp = ERPCovariances()
    erp.P = ERP
    erp.estimator = 'cov'
    X = erp.transform(data)
    train_NaiveBayes = R_TNT_NaiveBayes(targets=[
        'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
        'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '1', '2',
        '3', '4', '5', '6', '7', '8', '9', '_'
    ],
                                        mu_TNT=mu_TNT,
                                        sigma_TNT=sigma_TNT,
                                        class_prior=None)

    dist = [
        np.array([distance(x, Centroids_List[l]) for i, x in enumerate(X)])
        for l in [T, NT]
    ]

    r_TNT = np.array(np.log(dist[0] / dist[1]))

    mean, var = test_loop_P300(r_TNT_test=r_TNT,
                               y_test=labels,
                               e_test=event,
                               train_NaiveBayes=train_NaiveBayes,
                               T=0,
                               NT=1,
                               flashmode=flashmode,
                               visu=visu,
                               nb_targets=nb_targets)

    return mean, var