Beispiel #1
0
def test_mean_function_SGPR_FITC():
    X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function()
    Xu = X[::20].clone()
    model = SparseGPRegression(X,
                               y,
                               kernel,
                               Xu,
                               mean_function=mean_fn,
                               approx="FITC")
    model.optimize(optim.Adam({"lr": 0.01}))
    _post_test_mean_function(model, Xnew, ynew)
Beispiel #2
0
def test_inference_sgpr():
    N = 1000
    X = dist.Uniform(torch.zeros(N), torch.ones(N)*5).sample()
    y = 0.5 * torch.sin(3*X) + dist.Normal(torch.zeros(N), torch.ones(N)*0.5).sample()
    kernel = RBF(input_dim=1)
    Xu = torch.arange(0, 5.5, 0.5)

    sgpr = SparseGPRegression(X, y, kernel, Xu)
    sgpr.optimize(optim.Adam({"lr": 0.01}), num_steps=1000)

    Xnew = torch.arange(0, 5.05, 0.05)
    loc, var = sgpr(Xnew, full_cov=False)
    target = 0.5 * torch.sin(3*Xnew)

    assert_equal((loc - target).abs().mean().item(), 0, prec=0.07)
Beispiel #3
0
def test_inference_sgpr():
    N = 1000
    X = dist.Uniform(torch.zeros(N), torch.ones(N) * 5).sample()
    y = 0.5 * torch.sin(3 * X) + dist.Normal(torch.zeros(N),
                                             torch.ones(N) * 0.5).sample()
    kernel = RBF(input_dim=1)
    Xu = torch.arange(0, 5.5, 0.5)

    sgpr = SparseGPRegression(X, y, kernel, Xu)
    sgpr.optimize(optim.Adam({"lr": 0.01}), num_steps=1000)

    Xnew = torch.arange(0, 5.05, 0.05)
    loc, var = sgpr(Xnew, full_cov=False)
    target = 0.5 * torch.sin(3 * Xnew)

    assert_equal((loc - target).abs().mean().item(), 0, prec=0.07)
Beispiel #4
0
    def __init__(self, X_curr, u_curr, X_next, option='GP', inducing_size=100, name='GP_DYNAMICS'):
        """

        :param X_curr: 2 dim tensor array, state at  the current time stamp, H by n
        :param u_curr: 2 dim tensor array, control signal at the current time stamp, H by m
        :param X_next: 2 dim tensor array, state at the next time stamp, H by n
        :param option: use full GP or sparse GP
        :param inducing_size: the number of inducing points if using sparse GP
        :param name:
        """
        super(GP_DYNAMICS).__init__(name)

        if option not in ['SSGP', 'GP']:
            raise ValueError('undefined regression option for gp model!')

        assert(X_curr.dim() == 2 and u_curr.dim() == 2
               and X_next.dim() == 2), "all data inputs can only have 2 dimensions! X_curr: {}, u_curr: {}, X_next: {}".format(X_curr.dim(), u_curr.dim(), X_next.dim())

        assert(X_curr.size()[1] == u_curr.size()[1] and u_curr.size()[1] == X_next.size()[1]), "all data inputs need to have the same length! X_curr: {}, " \
                                                                                               "u_curr: {}, X_next: {}".format(X_curr.size(), u_curr.size(), X_next.size())

        self.X_hat = torch.cat((X_curr, u_curr))
        self.dX = X_next - X_curr

        self.GP_dyn = []

        if option == 'SSGP':
                for i in range(self.dX.size()[1]):
                    kernel = RBF(input_dim=self.X_hat.size()[1], lengthscale=torch.ones(self.X_hat.size()[1]) * 10., variance=torch.tensor(5.0),name="GPs_dim" + str(i) + "_RBF")

                    range_lis = range(0, self.X_hat.size()[0])
                    random.shuffle(range_lis)
                    Xu = self.X_hat[range_lis[0:inducing_size], :]

                    # need to set the name for different model, otherwise pyro will clear the parameter storage
                    ssgpmodel = SparseGPRegression(self.X_hat, self.dX[:, i], kernel, Xu, name="SSGPs_model_dim" + str(i), jitter=1e-5)
                    self.GP_dyn.append(ssgpmodel)

        else:
                for i in range(self.dX.size()[1]):
                    kernel = RBF(input_dim=self.X_hat.size()[1], lengthscale=torch.ones(self.X_hat.size()[1]) * 10., variance=torch.tensor(5.0), name="GPs_dim" + str(i) + "_RBF")
                    gpmodel = GPRegression(self.X_hat, self.dX[:, i], kernel, name="GPs_model_dim" + str(i), jitter=1e-5)
                    self.GP_dyn.append(gpmodel)

        self.option = option
        print("for the dynamics model, input dim {} and output dim {}".format(self.X_hat.size()[1], self.dX.size()[1]))

        self.Kff_inv = torch.zeros((self.dX.size()[1], self.X_hat.size()[0], self.X_hat.size()[0]))
        self.K_var = torch.zeros(self.dX.size()[1], 1)
        self.Beta = torch.zeros((self.dX.size()[1], self.X_hat.size()[0]))
        self.lengthscale = torch.zeros((self.dX.size()[1], self.X_hat.size()[1]))
        self.noise = torch.zeros((self.dX.size()[1], 1))

        if self.option == 'SSGP':
            self.Xu = torch.zeros((self.dX.size()[1], inducing_size))
Beispiel #5
0
def test_mean_function_SGPR_FITC():
    X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function()
    Xu = X[::20].clone()
    gpmodule = SparseGPRegression(X,
                                  y,
                                  kernel,
                                  Xu,
                                  mean_function=mean_fn,
                                  approx="FITC")
    train(gpmodule)
    _post_test_mean_function(gpmodule, Xnew, ynew)
Beispiel #6
0
    def __init__(self, X_s, y_s, X_o, y_o, option='GP', inducing_size=100, name='GP_ADF_RTSS'):
        """
        :param X_s: training inputs for the state transition model N by D tensor
        :param y_s: training outputs for the state transition model N by E tensor
        :param X_o: training inputs for the observation model N by E tensor
        :param y_o: training outputs for the observation model N by F tensor
        :param state_dim: dimension for the state, D
        :param observation_dim: dimension for the output, E
        :param transition_kernel: kernel function for the
        :param observation_kernel:
        :param options:
        """
        super(GP_ADF_RTSS, self).__init__(name)
        if option not in ['SSGP', 'GP']:
            raise ValueError('undefined regression option for gp model!')

        assert(X_s.dim() == 2 and y_s.dim() == 2
               and X_o.dim() == 2 and y_o.dim() == 2), "all data inputs can only have 2 dimensions"

        # # use RBF kernel for state transition model and observation model
        # self.state_transition_kernel = RBF(input_dim=state_dim, lengthscale=torch.ones(state_dim) * 0.1)
        # self.observation_kernel = RBF(input_dim=observation_dim, lengthscale=torch.ones(observation_dim) * 0.1)
        self.X_s = X_s
        self.y_s = y_s
        self.X_o = X_o
        self.y_o = y_o
        # print(X_s.dtype)
        # print(y_s.dtype)
        # print(X_o.dtype)
        # print(y_o.dtype)

        # choose the model type and initialize based on the option
        self.state_transition_model_list  = []
        self.observation_model_list = []


        if option == 'SSGP':
                for i in range(self.y_s.size()[1]):
                    kernel = RBF(input_dim=self.X_s.size()[1], lengthscale=torch.ones(self.X_s.size()[1]) * 10., variance=torch.tensor(5.0),name="GPs_dim" + str(i) + "_RBF")

                    range_lis = range(0, X_s.size()[0])
                    random.shuffle(range_lis)
                    Xu = X_s[range_lis[0:inducing_size], :]

                    # need to set the name for different model, otherwise pyro will clear the parameter storage
                    ssgpmodel = SparseGPRegression(X_s, y_s[:, i], kernel, Xu, name="SSGPs_model_dim" + str(i), jitter=1e-5)
                    self.state_transition_model_list.append(ssgpmodel)

                for i in range(self.y_o.size()[1]):
                    kernel = RBF(input_dim=self.X_o.size()[1], lengthscale=torch.ones(self.X_o.size()[1]) * 10, variance=torch.tensor(5.0), name="GPo_dim" + str(i) + "_RBF")

                    range_lis = range(0, y_o.size()[0])
                    random.shuffle(range_lis)
                    Xu = X_o[range_lis[0:inducing_size], :]

                    ssgpmodel = SparseGPRegression(X_o, y_o[:, i], kernel, Xu, name="SSGPo_model_dim" + str(i), noise=torch.tensor(2.))
                    self.state_transition_model_list.append(ssgpmodel)

        else:
                for i in range(self.y_s.size()[1]):
                    kernel = RBF(input_dim=self.X_s.size()[1], lengthscale=torch.ones(self.X_s.size()[1]) * 10., variance=torch.tensor(5.0), name="GPs_dim" + str(i) + "_RBF")
                    gpmodel = GPRegression(X_s, y_s[:, i], kernel, name="GPs_model_dim" + str(i), jitter=1e-5)
                    self.state_transition_model_list.append(gpmodel)

                for i in range(self.y_o.size()[1]):
                    kernel = RBF(input_dim=self.X_o.size()[1], lengthscale=torch.ones(self.X_o.size()[1]) * 10., variance=torch.tensor(5.0), name="GPo_dim" + str(i) + "_RBF")
                    gpmodel = GPRegression(X_o, y_o[:, i], kernel, name="GPo_model_dim"+ str(i), noise=torch.tensor(2.))
                    self.observation_model_list.append(gpmodel)

        self.option = option
        #
        # if model_file:
        #     self.load_model(model_file)





        self.mu_s_curr      = torch.zeros(y_s.size()[1])
        self.sigma_s_curr   = torch.eye(y_s.size()[1])
        self.mu_o_curr      = torch.zeros(y_o.size()[1])
        self.sigma_o_curr     = torch.eye(y_s.size()[1])

        self.mu_hat_s_curr      = torch.zeros(y_s.size()[1])
        self.sigma_hat_s_curr   = torch.eye(y_s.size()[1])
        self.mu_hat_s_prev      = torch.zeros(y_s.size()[1])
        self.sigma_hat_s_prev   = torch.eye(y_s.size()[1])

        # For backwards smoothing
        self.mu_hat_s_curr_lis     = []
        self.sigma_hat_s_curr_lis  = []
        self.mu_s_curr_lis         = []
        self.sigma_s_curr_lis      = []

        self.sigma_Xpf_Xcd_lis     = []

        self.Kff_s_inv = torch.zeros((y_s.size()[1], X_s.size()[0], X_s.size()[0]))
        self.Kff_o_inv = torch.zeros((y_o.size()[1], X_o.size()[0], X_o.size()[0]))
        self.K_s_var = torch.zeros(y_s.size()[1], 1)
        self.K_o_var = torch.zeros(y_o.size()[1], 1)
        self.Beta_s = torch.zeros((y_s.size()[1], X_s.size()[0]))
        self.Beta_o = torch.zeros((y_o.size()[1], X_o.size()[0]))
        self.lengthscale_s = torch.zeros((y_s.size()[1], X_s.size()[1]))
        self.lengthscale_o = torch.zeros((y_o.size()[1], X_o.size()[1]))
        self.noise_s = torch.zeros((y_s.size()[1], 1))
        self.noise_o = torch.zeros((y_o.size()[1], 1))

        if self.option == 'SSGP':
            self.Xu_s = torch.zeros((y_s.size()[1], inducing_size))
            self.Xu_o = torch.zeros((y_o.size()[1], inducing_size))
            self.noise_s = torch.zeros((y_s.size()[1], inducing_size))
            self.noise_o = torch.zeros((y_o.size()[1], inducing_size))

        print("for state transition model, input dim {} and output dim {}".format(X_s.size()[1], y_s.size()[1]))
        print("for observation model, input dim {} and output dim {}".format(X_o.size()[1], y_o.size()[1]))
Beispiel #7
0
def test_mean_function_SGPR_FITC():
    X, y, Xnew, ynew, kernel, mean_fn = _pre_test_mean_function()
    Xu = X[::20].clone()
    model = SparseGPRegression(X, y, kernel, Xu, mean_function=mean_fn, approx="FITC")
    model.optimize(optim.Adam({"lr": 0.01}))
    _post_test_mean_function(model, Xnew, ynew)