Beispiel #1
0
def test_log_prob_normalized(concentration):
    grid = torch.arange(0., 2 * math.pi, 1e-4)
    prob = VonMises(0.0, concentration).log_prob(grid).exp()
    norm = prob.mean().item() * 2 * math.pi
    assert abs(norm - 1) < 1e-3, norm
Beispiel #2
0
def test_log_prob_normalized(concentration):
    grid = torch.arange(0, 2 * math.pi, 1e-4)
    prob = VonMises(0.0, concentration).log_prob(grid).exp()
    norm = prob.mean().item() * 2 * math.pi
    assert abs(norm - 1) < 1e-3, norm
Beispiel #3
0
def test_sample(loc, concentration, n_samples=int(1e6), n_iter=50):
    prob = VonMises(loc, concentration)
    samples = prob.sample((n_samples, ))
    mu, kappa = _fit_params_from_samples(samples, n_iter=n_iter)
    assert abs(loc - mu) < 0.1
    assert abs(concentration - kappa) < concentration * 0.1
Beispiel #4
0
def test_von_mises_gof(loc, concentration):
    d = VonMises(loc, concentration)
    samples = d.sample(torch.Size([100000]))
    probs = d.log_prob(samples).exp()
    gof = auto_goodness_of_fit(samples, probs, dim=1)
    assert gof > TEST_FAILURE_RATE