Beispiel #1
0
 def resolution(self, m, pre=[], post=[]):
     sgn = '+-'[m[1][0] < 0]
     if isinstance(m[1][0], Fraction):
         b = Priorites3.priorites(abs(m[1][0]) / 2)[-1][0]
     elif m[1][0] % 2:
         b = 'Fraction(%s, 2)' % abs(m[1][0])
     else:
         b = abs(m[1][0]) / 2
     fc = ['Polynome("%sx%s%s")' % (m[0][0], sgn, b), '**', '2']
     reste = ['-']
     if m[2][0] > 0 or isinstance(m[2][0], Fraction):
         reste.extend(Priorites3.splitting('%s**2+%r' % (b, m[2][0])))
     else:
         reste.extend(Priorites3.splitting('%s**2%r' % (b, m[2][0])))
     etapes = list(pre)
     etapes.extend(fc)
     etapes.extend(reste)
     etapes.extend(post)
     etapes = [etapes]
     for unreste in Priorites3.priorites(''.join(reste)):
         calcul = list(pre)
         calcul.extend(fc)
         if unreste[0][0] != '-':
             calcul.append('+')
         else:
             calcul.append('-')
             unreste[0] = unreste[0][1:]
         calcul.extend(unreste)
         calcul.extend(post)
         etapes.append(calcul)
     if isinstance(b, str):  # On supprime deux étapes trop détaillée UGLY
         # TODO: Corriger la classe Fractions pour qu'elle gère plusieurs niveaux de détails.
         etapes.pop(1)
         etapes.pop(1)
     if pre:
         calcul = pre[0:-1]
         calcul.extend(fc)
         fc = list(calcul)
         reste = Priorites3.priorites(''.join(reste))[-1]
         reste.extend(['*', pre[0]])
         for unreste in Priorites3.priorites(''.join(reste)):
             calcul = list(fc)
             if unreste[0][0] != '-':
                 calcul.append('+')
             else:
                 calcul.append('-')
                 unreste[0] = unreste[0][1:]
             calcul.extend(unreste)
             etapes.append(calcul)
     return etapes
Beispiel #2
0
 def resolution(self, m, pre=[], post=[]):
     sgn = '+-'[m[1][0] < 0]
     if isinstance(m[1][0], Fraction):
         b = Priorites3.priorites(abs(m[1][0]) / 2)[-1][0]
     elif m[1][0] % 2:
         b = 'Fraction(%s, 2)' % abs(m[1][0])
     else:
         b = abs(m[1][0]) / 2
     fc = ['Polynome("%sx%s%s")' % (m[0][0], sgn, b), '**', '2']
     reste = ['-']
     if m[2][0] > 0 or isinstance(m[2][0], Fraction):
         reste.extend(Priorites3.splitting('%s**2+%r' % (b, m[2][0])))
     else:
         reste.extend(Priorites3.splitting('%s**2%r' % (b, m[2][0])))
     etapes = list(pre)
     etapes.extend(fc)
     etapes.extend(reste)
     etapes.extend(post)
     etapes = [etapes]
     for unreste in Priorites3.priorites(''.join(reste)):
         calcul = list(pre)
         calcul.extend(fc)
         if unreste[0][0] != '-':
             calcul.append('+')
         else:
             calcul.append('-')
             unreste[0] = unreste[0][1:]
         calcul.extend(unreste)
         calcul.extend(post)
         etapes.append(calcul)
     if isinstance(b, str):  # On supprime deux étapes trop détaillée UGLY
         # TODO: Corriger la classe Fractions pour qu'elle gère plusieurs niveaux de détails.
         etapes.pop(1)
         etapes.pop(1)
     if pre:
         calcul = pre[0:-1]
         calcul.extend(fc)
         fc = list(calcul)
         reste = Priorites3.priorites(''.join(reste))[-1]
         reste.extend(['*', pre[0]])
         for unreste in Priorites3.priorites(''.join(reste)):
             calcul = list(fc)
             if unreste[0][0] != '-':
                 calcul.append('+')
             else:
                 calcul.append('-')
                 unreste[0] = unreste[0][1:]
             calcul.extend(unreste)
             etapes.append(calcul)
     return etapes
Beispiel #3
0
def factorisation():
    """Génère un exercice de factorisation utilisant les identités remarquables ou
    la distributivité
    """
    l = [randrange(1, 11) for dummy in range(21)]
    diff = [True, False, False]
    shuffle(diff)
    exo = [id_rem1, id_rem2]
    lexo = [exo[randrange(2)](l[0], l[1])]
    lexo.append(id_rem3(l[2], l[3]))
    lexo.append(id_rem3bis(l[4], l[5], l[6]))
    lexo.append(facteur_commun1(l[7:13], diff=diff.pop()))
    shuffle(lexo)
    exo = [facteur_commun2, facteur_commun3]
    shuffle(exo)
    lexo.append(exo[0](l[13:17], diff=diff.pop()))
    lexo.append(exo[1](l[17:21], diff=diff.pop()))

    exo = [
        "\\exercice",
        u"Factoriser chacune des expressions littérales suivantes :"
    ]
    exo.append("\\begin{multicols}{2}")
    cor = [
        "\\exercice*",
        u"Factoriser chacune des expressions littérales suivantes :"
    ]
    cor.append("\\begin{multicols}{2}")
    for i in range(len(lexo)):
        p = [lexo[i]]
        while True:
            fact = factoriser(p[-1])
            if fact:
                p.append(fact)
            else:
                break
        p = Priorites3.texify(
            [Priorites3.splitting(p[j]) for j in range(len(p))])
        cor.append('\\\\\n'.join(
            ['$%s=%s$' % (chr(i + 65), p[j]) for j in range(len(p) - 1)]))
        cor.append('\\\\')
        cor.append('\\fbox{$%s=%s$}\\\\\n' % (chr(i + 65), p[-1]))
    exo.append('\\\\\n'.join([
        '$%s=%s$' %
        (chr(i + 65), Priorites3.texify([Priorites3.splitting(lexo[i])])[0])
        for i in range(len(lexo))
    ]))
    exo.append("\\end{multicols}")
    cor.append("\\end{multicols}")
    return exo, cor
Beispiel #4
0
def id_rem():
    """Génère un exercice de développement des 3 identités remarquables avec une situation piège.
    Dans un premier temps, on n'utilise que des nombres entiers, puis des fractions, puis l'opposé 
    d'une expression littérale.
    """

    l = [randrange(1, 11) for dummy in range(14)]
    while pgcd(l[8], l[9]) != 1 or pgcd(l[10], l[11]) != 1 or (l[9] == 1 and l[11] == 1):
        # On crée deux rationnels irréductibles non tous deux entiers.
        l = [randrange(1, 11) for dummy in range(14)]
    lpoly = [id_rem1(l[0], l[1]), id_rem2(l[2], l[3]), id_rem3(l[4], l[5]), id_rem4(l[6], l[7])]
    shuffle(lpoly)
    lid = [id_rem1, id_rem2, id_rem3, id_rem4]
    lpoly2 = [lid.pop(randrange(4))(Fraction(l[8], l[9]), Fraction(l[10], l[11]))]
    lpoly2.append('-' + lid.pop(randrange(3))(l[12], l[13]))
    shuffle(lpoly2)
    lpoly.extend(lpoly2)
    expr = [Priorites3.texify([Priorites3.splitting(lpoly[i])]) for i in range(6)]
    exo = ["\\exercice", u"Développer chacune des expressions littérales suivantes :"]
    exo.append("\\begin{multicols}{2}")
    exo.append('\\\\\n'.join(['$%s=%s$' % (chr(i + 65), expr[i][0]) for i in range(6)]))
    exo.append("\\end{multicols}")
    cor = ["\\exercice*", u"Développer chacune des expressions littérales suivantes :"]
    cor.append("\\begin{multicols}{2}")
    for i in range(6):
        dev = Priorites3.texify(Priorites3.priorites(lpoly[i]))
        dev.insert(0, expr[i][0])
        cor.append('\\\\\n'.join(['$%s=%s$' % (chr(i + 65), dev[j]) for j in range(len(dev) - 1)]))
        cor.append('\\\\')
        cor.append('\\fbox{$%s=%s$}\\\\\n' % (chr(i + 65), dev[-1]))
    cor.append("\\end{multicols}")

    return exo, cor
def corrige(nom, fct, ant):
    from pyromaths.outils import Priorites3
    sol = []
    calc = fct(ant)
    res = Priorites3.priorites(calc)
    res = Priorites3.texify(res)
    sol.append(r"\par $%s\,(%s)=%s$\par" % (nom, ant, Priorites3.texify([Priorites3.splitting(calc)])[0]))
    sol.append('\\par\n'.join(['$%s\\,(%s)=%s$' % (nom, ant, res[j]) for j in range(len(res) - 1)]))
    sol.append(r'\par')
    sol.append('\\fbox{$%s\\,(%s)=%s$}\\\\\n' % (nom, ant, res[-1]))
    return sol
Beispiel #6
0
def corrige(nom, fct, ant):
    from pyromaths.outils import Priorites3
    sol = []
    calc = fct(ant)
    res = Priorites3.priorites(calc)
    res = Priorites3.texify(res)
    sol.append(r"\par $%s\,(%s)=%s$\par" %
               (nom, ant, Priorites3.texify([Priorites3.splitting(calc)])[0]))
    sol.append('\\par\n'.join(
        ['$%s\\,(%s)=%s$' % (nom, ant, res[j]) for j in range(len(res) - 1)]))
    sol.append(r'\par')
    sol.append('\\fbox{$%s\\,(%s)=%s$}\\\\\n' % (nom, ant, res[-1]))
    return sol
Beispiel #7
0
 def print_coef(coef):
     """Gère le format du coef
     """
     if isinstance(coef, (float, int)):
         if coef > 0: return "+" + decimaux(coef)
         else: return decimaux(coef)
     if isinstance(coef, Fraction):
         if isinstance(coef.n, int) and isinstance(coef.d, int) and coef.n < 0 and coef.d > 0:
             return "-" + str(Fraction(-coef.n, coef.d, coef.code))
         return "+" + str(coef)
     if isinstance(coef, str):
         texte = "(" + "".join(Priorites3.texify([Priorites3.splitting(coef)])) + ")"
         if texte[0] != "-": return "+" + texte
         else: return texte
Beispiel #8
0
def factorisation():
    """Génère un exercice de factorisation utilisant les identités remarquables ou
    la distributivité
    """
    l = [randrange(1, 11) for dummy in range(21)]
    diff = [True, False, False]
    shuffle(diff)
    exo = [id_rem1, id_rem2]
    lexo = [exo[randrange(2)](l[0], l[1])]
    lexo.append(id_rem3(l[2], l[3]))
    lexo.append(id_rem3bis(l[4], l[5], l[6]))
    lexo.append(facteur_commun1(l[7:13], diff=diff.pop()))
    shuffle(lexo)
    exo = [facteur_commun2, facteur_commun3]
    shuffle(exo)
    lexo.append(exo[0](l[13:17], diff=diff.pop()))
    lexo.append(exo[1](l[17:21], diff=diff.pop()))

    exo = ["\\exercice", u"Factoriser chacune des expressions littérales suivantes :"]
    exo.append("\\begin{multicols}{2}")
    cor = ["\\exercice*", u"Factoriser chacune des expressions littérales suivantes :"]
    cor.append("\\begin{multicols}{2}")
    for i in range(len(lexo)):
        p = [lexo[i]]
        while True:
            fact = factoriser(p[-1])
            if fact:
                p.append(fact)
            else: break
        p = Priorites3.texify([Priorites3.splitting(p[j]) for j in range(len(p))])
        cor.append('\\\\\n'.join(['$%s=%s$' % (chr(i + 65), p[j]) for j in range(len(p) - 1)]))
        cor.append('\\\\')
        cor.append('\\fbox{$%s=%s$}\\\\\n' % (chr(i + 65), p[-1]))
    exo.append('\\\\\n'.join(['$%s=%s$' % (chr(i + 65), Priorites3.texify([Priorites3.splitting(lexo[i])])[0]) for i in range(len(lexo))]))
    exo.append("\\end{multicols}")
    cor.append("\\end{multicols}")
    return exo, cor
 def print_coef(coef):
     """Gère le format du coef
     """
     if isinstance(coef, (float, int)):
         if coef > 0: return "+" + decimaux(coef)
         else: return decimaux(coef)
     if isinstance(coef, Fraction):
         if isinstance(coef.n, int) and isinstance(
                 coef.d, int) and coef.n < 0 and coef.d > 0:
             return "-" + str(Fraction(-coef.n, coef.d, coef.code))
         return "+" + str(coef)
     if isinstance(coef, str):
         texte = "(" + "".join(
             Priorites3.texify([Priorites3.splitting(coef)])) + ")"
         if texte[0] != "-": return "+" + texte
         else: return texte
Beispiel #10
0
 def tex_answer(self):
     exo = [r'\exercice*']
     exo.append(_(u'Déterminer les racines des polynômes :\\par'))
     noms = [r'P\,(x) &= ', r'Q\,(x) &= ', r'R\,(x) &= ']
     r = ''
     question = [[], [], []]
     for i in range(3):
         p = []
         m = Polynome(list(self.exercice[i])).ordonne()
         if factoriser('%r' % Polynome(m)):
             p = [factoriser('%r' % Polynome(m))]
             while factoriser(p[-1]):
                 p.append(factoriser(p[-1]))
         if p and eval(Priorites3.splitting(p[-1])[0]).degre() > 0:
             tmp = Priorites3.texify([Priorites3.splitting(p[j]) for j in range(len(p))])
             question[i].append('{$\\! \\begin{aligned}')
             question[i].append(noms[i] + str(Polynome(m, 'x')) + r'\\')
             question[i].append('\\\\\n'.join(['&=%s' % (tmp[j]) for j in range(len(tmp))]))
             question[i].append(r'\end{aligned}$}\par')
             lp = Priorites3.splitting(p[-1])
             racines = []
             for e in lp:
                 if e[:9] == 'Polynome(':
                     e = eval(e)
                     if len(e) == 2:
                         racines.append(str(Fraction(-e[1][0], e[0][0]).simplifie()))
                     else:
                         racines.append('0')
             if len(racines) > 1:
                 question[i].append(_(u'\\underline{Les racines de $%s$ sont }\\fbox{$%s$}') % (noms[i].rstrip(r' &= '), '$}\\underline{ et }\\fbox{$'.join(racines)))
             elif len(racines) == 1:
                 question[i].append(_(u'\\underline{L\'unique racine de $%s$ est }\\fbox{$%s$}') % (noms[i].rstrip(r' &= '), racines[0]))
         elif len(m) == 2 and m[0][1] == 2 and m[1][1] == 0 and m[0][0] * m[1][0] > 0:
             question[i].append('$' + noms[i] + str(Polynome(m, 'x')) + r'$\par')
             question[i][-1] = question[i][-1].replace('&', '')
             if m[1][0] > 0: question[i].append('$' + noms[i][:7] + ' \\geqslant %r$' % m[1][0])
             else: question[i].append('$' + noms[i][:7] + ' \\leqslant %r$' % m[1][0])
             question[i].append(_(u'car un carré est toujours positif.\\par\n\\underline{$%s$ n\'a donc pas de racine.}') % (noms[i].rstrip(r' &= ')))
         else:
             question[i].append('$' + noms[i] + str(Polynome(m, 'x')) + r'\quad$')
             question[i][-1] = question[i][-1].replace('&', '')
             question[i].append(_(u'On calcule le discriminant de $%s$ avec $a=%s$, $b=%s$ et $c=%s$ :\\par\\medskip') % (noms[i].rstrip(r' &= '), m[0][0], m[1][0], m[2][0]))
             question[i].append(r'\begin{tabularx}{\linewidth}[t]{XXX}')
             question[i].append(r'{$\! \begin{aligned}')
             if m[1][0]>0:
                 sol = [[str(m[1][0]), '**', '2', '-', '4', '*', str(m[0][0]), '*', str(m[2][0])]]
                 sol.extend(Priorites3.priorites('%s**2-4*%s*%s' % (m[1][0], m[0][0], m[2][0])))
             else:
                 sol = [['(', str(m[1][0]), ')', '**', '2', '-', '4', '*', str(m[0][0]), '*', str(m[2][0])]]
                 sol.extend(Priorites3.priorites('(%s)**2-4*%s*%s' % (m[1][0], m[0][0], m[2][0])))
             solTeX = Priorites3.texify(sol)
             for s in solTeX:
                 question[i].append(u'\\Delta &= %s\\\\' % s)
             question[i].append(r'\end{aligned}$}')
             question[i].append(r'&')
             question[i].append(r'{$\! \begin{aligned}')
             delta = sol[-1][0]
             print(sol)
             sol = [['Fraction(SquareRoot([[%s, None], [-1, %s]]),\'2*%s\')' % (-m[1][0], delta, m[0][0])]]
             sol.extend(Priorites3.priorites(sol[0][0]))
             sol = Priorites3.texify(sol)
             for s in sol:
                 question[i].append(u'x_1 &= %s\\\\' % s)
             racines = [sol[-1]]
             question[i].append(r'\end{aligned}$}')
             question[i].append(r'&')
             question[i].append(r'{$\! \begin{aligned}')
             sol = [['Fraction(SquareRoot([[%s, None], [1, %s]]),\'2*%s\')' % (-m[1][0], delta, m[0][0])]]
             sol.extend(Priorites3.priorites(sol[0][0]))
             sol = Priorites3.texify(sol)
             for s in sol:
                 question[i].append(u'x_2 &= %s\\\\' % s)
             racines.append(sol[-1])
             question[i].append(r'\end{aligned}$}')
             question[i].append(r'\end{tabularx}\par')
             question[i].append(_(u'\\underline{Les racines de $%s$ sont }\\fbox{$%s$}') % (noms[i].rstrip(r' &= '), _('$}\\underline{ et }\\fbox{$').join(racines)))
             if i == 1: question.append(question[1])
     if len(question) == 4:
         question.pop(1)
     if question[0][0][-6:] == r'\quad$':
         question[1].insert(0, r'\par\medskip\begin{tabularx}{\linewidth}[t]{XX}')
         question[2].insert(0, r'&')
         question[2].append(r'\end{tabularx}\par\medskip')
     else:
         question[0].insert(0, r'\begin{tabularx}{\linewidth}[t]{XX}')
         question[1].insert(0, r'&')
         question[1].append(r'\end{tabularx}\par\medskip')
     for i in range(3): exo.extend(question[i])
     return exo
Beispiel #11
0
 def tex_answer(self):
     exo = [r'\exercice*']
     exo.append(_(u'Déterminer les racines des polynômes :\\par'))
     noms = [r'P\,(x) &= ', r'Q\,(x) &= ', r'R\,(x) &= ']
     r = ''
     question = [[], [], []]
     for i in range(3):
         p = []
         m = Polynome(list(self.exercice[i])).ordonne()
         if factoriser('%r' % Polynome(m)):
             p = [factoriser('%r' % Polynome(m))]
             while factoriser(p[-1]):
                 p.append(factoriser(p[-1]))
         if p and eval(Priorites3.splitting(p[-1])[0]).degre() > 0:
             tmp = Priorites3.texify([Priorites3.splitting(p[j]) for j in range(len(p))])
             question[i].append('{$\\! \\begin{aligned}')
             question[i].append(noms[i] + str(Polynome(m, 'x')) + r'\\')
             question[i].append('\\\\\n'.join(['&=%s' % (tmp[j]) for j in range(len(tmp))]))
             question[i].append(r'\end{aligned}$}\par')
             lp = Priorites3.splitting(p[-1])
             racines = []
             for e in lp:
                 if e[:9] == 'Polynome(':
                     e = eval(e)
                     if len(e) == 2:
                         racines.append(str(Fraction(-e[1][0], e[0][0]).simplifie()))
                     else:
                         racines.append('0')
             if len(racines) > 1:
                 question[i].append(_(u'\\underline{Les racines de $%s$ sont }\\fbox{$%s$}') % (noms[i].rstrip(r' &= '), '$}\\underline{ et }\\fbox{$'.join(racines)))
             elif len(racines) == 1:
                 question[i].append(_(u'\\underline{L\'unique racine de $%s$ est }\\fbox{$%s$}') % (noms[i].rstrip(r' &= '), racines[0]))
         elif len(m) == 2 and m[0][1] == 2 and m[1][1] == 0 and m[0][0] * m[1][0] > 0:
             question[i].append('$' + noms[i] + str(Polynome(m, 'x')) + r'$\par')
             question[i][-1] = question[i][-1].replace('&', '')
             if m[1][0] > 0: question[i].append('$' + noms[i][:7] + ' \\ge %r$' % m[1][0])
             else: question[i].append('$' + noms[i][:7] + ' \\le %r$' % m[1][0])
             question[i].append(_(u'car un carré est toujours positif.\\par\n\\underline{$%s$ n\'a donc pas de racine.}') % (noms[i].rstrip(r' &= ')))
         else:
             question[i].append('$' + noms[i] + str(Polynome(m, 'x')) + r'\quad$')
             question[i][-1] = question[i][-1].replace('&', '')
             question[i].append(_(u'On calcule le discriminant de $%s$ avec $a=%s$, $b=%s$ et $c=%s$ :\\par\\medskip') % (noms[i].rstrip(r' &= '), m[0][0], m[1][0], m[2][0]))
             question[i].append(r'\begin{tabularx}{\linewidth}[t]{XXX}')
             question[i].append(r'{$\! \begin{aligned}')
             sol = [[str(m[1][0]), '**', '2', '-', '4', '*', str(m[0][0]), '*', str(m[2][0])]]
             sol.extend(Priorites3.priorites('%s**2-4*%s*%s' % (m[1][0], m[0][0], m[2][0])))
             solTeX = Priorites3.texify(sol)
             for s in solTeX:
                 question[i].append(u'\\Delta &= %s\\\\' % s)
             question[i].append(r'\end{aligned}$}')
             question[i].append(r'&')
             question[i].append(r'{$\! \begin{aligned}')
             delta = sol[-1][0]
             sol = [['Fraction(SquareRoot([[%s, None], [-1, %s]]),\'2*%s\')' % (-m[1][0], delta, m[0][0])]]
             sol.extend(Priorites3.priorites(sol[0][0]))
             sol = Priorites3.texify(sol)
             for s in sol:
                 question[i].append(u'x_1 &= %s\\\\' % s)
             racines = [sol[-1]]
             question[i].append(r'\end{aligned}$}')
             question[i].append(r'&')
             question[i].append(r'{$\! \begin{aligned}')
             sol = [['Fraction(SquareRoot([[%s, None], [1, %s]]),\'2*%s\')' % (-m[1][0], delta, m[0][0])]]
             sol.extend(Priorites3.priorites(sol[0][0]))
             sol = Priorites3.texify(sol)
             for s in sol:
                 question[i].append(u'x_2 &= %s\\\\' % s)
             racines.append(sol[-1])
             question[i].append(r'\end{aligned}$}')
             question[i].append(r'\end{tabularx}\par')
             question[i].append(_(u'\\underline{Les racines de $%s$ sont }\\fbox{$%s$}') % (noms[i].rstrip(r' &= '), _('$}\\underline{ et }\\fbox{$').join(racines)))
             if i == 1: question.append(question[1])
     if len(question) == 4:
         question.pop(1)
     if question[0][0][-6:] == r'\quad$':
         question[1].insert(0, r'\par\medskip\begin{tabularx}{\linewidth}[t]{XX}')
         question[2].insert(0, r'&')
         question[2].append(r'\end{tabularx}\par\medskip')
     else:
         question[0].insert(0, r'\begin{tabularx}{\linewidth}[t]{XX}')
         question[1].insert(0, r'&')
         question[1].append(r'\end{tabularx}\par\medskip')
     for i in range(3): exo.extend(question[i])
     return exo