Beispiel #1
0
 def test_is_a_grid(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs'])
     assert point_list.is_a_grid(
         resolution=sample_logs_mock['resolution']) is False
     regular_point_list = point_list.grid_point_list(
         resolution=sample_logs_mock['resolution'])
     assert regular_point_list.is_a_grid(
         resolution=sample_logs_mock['resolution']) is True
Beispiel #2
0
 def test_coordinates_along_direction(self):
     xyz = [[0, 1], [2, 3], [4, 5]]
     point_list = PointList(xyz)
     for r, index, label in zip(xyz, range(3), ('vx', 'vy', 'vz')):
         assert point_list.coordinates_along_direction(
             index) == pytest.approx(r)
         assert point_list.coordinates_along_direction(
             label) == pytest.approx(r)
Beispiel #3
0
 def test_has_overlapping_points(self):
     xyz = [[0.0, 1.0, 2.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
     assert PointList(xyz).has_overlapping_points(
         resolution=DEFAULT_POINT_RESOLUTION) is False
     xyz = [[0.0, 1.0, 2.0, 2.009], [0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0]]
     assert PointList(xyz).has_overlapping_points(
         resolution=DEFAULT_POINT_RESOLUTION) is True
Beispiel #4
0
 def test_fuse_with(self):
     xyz1 = [[0.0, 1.0, 2.0, 3.0], [0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0]]
     xyz2 = [[1.009, 0.995, 2.0, 3.005, 4.0], [0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0]]
     point_list = PointList(xyz1)
     common = point_list.fuse_with(PointList(xyz2),
                                   resolution=DEFAULT_POINT_RESOLUTION)
     assert common.vx == pytest.approx([0.0, 1.0, 2.0, 3.0, 4.0])
Beispiel #5
0
 def test_intersection(self):
     xyz1 = [[0.0, 1.0, 2.0, 3.0], [0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0]]
     xyz2 = [[1.009, 0.995, 2.0, 3.005, 4.0], [0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0]]
     common = PointList(xyz1).intersection(
         PointList(xyz2), resolution=DEFAULT_POINT_RESOLUTION)
     assert common.vx == pytest.approx(
         [1.0, 2.0, 3.0, 1.009, 0.995, 2.0, 3.005])
Beispiel #6
0
 def test_aggregate(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs']).aggregate(
         PointList(sample_logs_mock['xyz']))
     np.testing.assert_equal(
         point_list.vx,
         sample_logs_mock['xyz'][0] + sample_logs_mock['xyz'][0])
     np.testing.assert_equal(
         point_list.vy,
         sample_logs_mock['xyz'][1] + sample_logs_mock['xyz'][1])
     np.testing.assert_equal(
         point_list.vz,
         sample_logs_mock['xyz'][2] + sample_logs_mock['xyz'][2])
Beispiel #7
0
 def test_linspace(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs'])
     extents = sample_logs_mock['extents']
     vx, vy, vz = point_list.linspace(
         resolution=sample_logs_mock['resolution'])
     assert [vx[0], vx[-1],
             (vx[-1] - vx[0]) / (len(vx) - 1)] == pytest.approx(extents[0])
     assert len(vx) == 14
     assert [vy[0], vy[-1],
             (vy[-1] - vy[0]) / (len(vy) - 1)] == pytest.approx(extents[1])
     assert len(vy) == 4  # many values of point_list.vy are repeated
     assert [vz[0], vz[-1],
             (vz[-1] - vz[0]) / (len(vz) - 1)] == pytest.approx(extents[2])
     assert len(vz) == 4  # many values of point_list.vz are repeated
Beispiel #8
0
 def test_grid_point_list(self):
     r"""
     The regular grid spanned by the three orthonormal vectors is the unit cube, with eight points
      The order of the coordinates must follow this nested loop structure:
      for vx in ...:
          for vy in ...:
              for vz in ...:
     """
     # Passing the orthonormal vectors along each direction as three points
     point_list = PointList([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
     other_list = point_list.grid_point_list(
         resolution=DEFAULT_POINT_RESOLUTION)
     cube_coordinates = [[0., 0., 0.], [0., 0., 1.], [0., 1., 0.],
                         [0., 1., 1.], [1., 0., 0.], [1., 0., 1.],
                         [1., 1., 0.], [1., 1., 1.]]
     assert np.allclose(cube_coordinates, other_list.coordinates)
Beispiel #9
0
    def wrapped_function(peaks_data):
        r"""
        Constructor of `StrainField` objects

        Parameters
        ----------
        peaks_data: dict

        Returns
        -------
        ~pyrs.dataobjects.fields.StrainField

        Examples
        --------

        """

        # Required arguments
        for required in ('subruns', 'wavelength', 'peak_profile', 'background_type', 'd_spacing',
                         'error_fraction', 'vx', 'vy', 'vz'):
            assert required in peaks_data

        for key in ('subruns', 'd_reference', 'd_spacing', 'fit_costs', 'vx', 'vy', 'vz'):
            if isinstance(peaks_data[key], (list, tuple)):
                peaks_data[key] = np.array(peaks_data[key])
        for key in peaks_data['native']:
            peaks_data['native'][key] = _coerce_to_ndarray(peaks_data['native'][key])
        # Default values for optional arguments of the PeakCollection constructor
        runnumber = peaks_data.get('runnumber', -1)

        peak_collection = PeakCollection(peaks_data['peak_tag'],
                                         peaks_data['peak_profile'], peaks_data['background_type'],
                                         peaks_data['wavelength'],
                                         runnumber=runnumber)

        # Back-calculate the peak centers from supplied lattice spacings
        centers = 2 * np.rad2deg(np.arcsin(peaks_data['wavelength'] / (2 * peaks_data['d_spacing'])))

        # Enter the native parameters in the peak collection
        subruns_count = len(peaks_data['subruns'])
        peaks_data['native'].update({'PeakCentre': centers})
        dtype = get_parameter_dtype(peaks_data['peak_profile'], peaks_data['background_type'])
        parameters_value = np.zeros(subruns_count, dtype=dtype)
        parameters_error = np.zeros(subruns_count, dtype=dtype)
        for parameter_name in peaks_data['native']:
            values = peaks_data['native'][parameter_name]
            parameters_value[parameter_name] = values
            parameters_error[parameter_name] = peaks_data['error_fraction'] * values
        # set_peak_fitting_values ensures all required fitting parameters are being passed
        peak_collection.set_peak_fitting_values(peaks_data['subruns'],
                                                parameters_value, parameters_error,
                                                peaks_data['fit_costs'])

        # set the reference lattice spacing
        peak_collection.set_d_reference(1.0, 0.1)

        # Point list
        point_list = PointList([peaks_data['vx'], peaks_data['vy'], peaks_data['vz']])

        return StrainFieldSingle(point_list=point_list, peak_collection=peak_collection)
Beispiel #10
0
 def test_cluster(self):
     xyz = [[0.0, 1.0, 2.0, 3.0, 1.009, 0.995, 2.0, 3.005, 4.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
     clusters = PointList(xyz).cluster(resolution=DEFAULT_POINT_RESOLUTION)
     for cluster, comparison in zip(clusters,
                                    [[1, 4, 5], [2, 6], [3, 7], [0], [8]]):
         assert cluster == pytest.approx(comparison)
Beispiel #11
0
 def test_tolist(self, sample_logs_mock):
     for input_source in (sample_logs_mock['xyz'], sample_logs_mock['logs'],
                          np.array(sample_logs_mock['xyz'])):
         list_of_list = PointList.tolist(input_source)
         assert isinstance(list_of_list, tuple)
         for i in range(3):
             assert isinstance(list_of_list[i], np.ndarray)
             np.testing.assert_equal(list_of_list[i],
                                     sample_logs_mock['xyz'][i])
Beispiel #12
0
def test_aggregate_point_list(sample_logs_mock):
    point_list = aggregate_point_lists(*[
        PointList(sample_logs_mock['logs']) for _ in range(3)
    ])  # three lists
    list_x, list_y, list_z = sample_logs_mock['xyz'][0], sample_logs_mock[
        'xyz'][1], sample_logs_mock['xyz'][2]
    assert list(point_list.vx) == pytest.approx(list_x + list_x + list_x)
    assert list(point_list.vy) == pytest.approx(list_y + list_y + list_y)
    assert list(point_list.vz) == pytest.approx(list_z + list_z + list_z)
Beispiel #13
0
 def test_getattr(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs'])
     assert list(point_list.vx) == pytest.approx(sample_logs_mock['xyz'][0])
     assert list(point_list.vy) == pytest.approx(sample_logs_mock['xyz'][1])
     try:
         _ = point_list.dummy  # noqa F841
         assert False, 'Should not have been able to access attribute'
     except AttributeError:
         pass  # this is the correct behavior
Beispiel #14
0
 def test_init(self, sample_logs_mock):
     for input_source_type in ('logs', 'xyz'):
         input_source = sample_logs_mock[input_source_type]
         point_list = PointList(input_source)
         # dereference attributes 'vx', 'vy', 'vz'
         np.testing.assert_equal(point_list.vx, sample_logs_mock['xyz'][0])
         np.testing.assert_equal(point_list.vy, sample_logs_mock['xyz'][1])
         np.testing.assert_equal(point_list.vz, sample_logs_mock['xyz'][2])
         # dereference by item index
         xyz = np.array(sample_logs_mock['xyz'])
         assert point_list[5] == pytest.approx(list(xyz[:, 5]))
Beispiel #15
0
 def test_coordinates_irreducible(self):
     xyz = [
         [0.0, 1.000, 1.001, 2.0, 3.0, 4.0, 0.0, 1.0, 2.0, 3.0, 4.0],  # x
         [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0],  # y
         [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0]
     ]  # z
     point_list = PointList(xyz)
     # Volume scan
     coordinates_irreducible = point_list.coordinates_irreducible(
         resolution=DEFAULT_POINT_RESOLUTION)
     assert coordinates_irreducible[0] == pytest.approx(
         [0.0, 0.0, 0.0])  # check first point
     assert coordinates_irreducible[-1] == pytest.approx(
         [4.0, 1.0, 1.0])  # check last point
     assert coordinates_irreducible.shape[
         -1] == 3  # xyz if a volume scan, thus three dimensions
     assert coordinates_irreducible == pytest.approx(
         np.array(xyz).transpose())
     # Surface scan
     xyz[2] = [0] * 11
     point_list = PointList(xyz)
     coordinates_irreducible = point_list.coordinates_irreducible(
         resolution=DEFAULT_POINT_RESOLUTION)
     assert coordinates_irreducible[0] == pytest.approx(
         [0.0, 0.0])  # check first point
     assert coordinates_irreducible[-1] == pytest.approx(
         [4.0, 1.0])  # check last point
     assert coordinates_irreducible.shape[
         -1] == 2  # xyz if a surface scan, thus two dimensions
     assert coordinates_irreducible == pytest.approx(
         np.array(xyz[0:2]).transpose())
     # Linear scan
     xyz[1] = [0] * 11
     point_list = PointList(xyz)
     coordinates_irreducible = point_list.coordinates_irreducible(
         resolution=DEFAULT_POINT_RESOLUTION)
     assert coordinates_irreducible[0] == pytest.approx(
         [0.0])  # check first point
     assert coordinates_irreducible[-1] == pytest.approx(
         [4.0])  # check last point
     assert coordinates_irreducible.shape[
         -1] == 1  # xyz if a linear scan, thus one dimensions
     assert coordinates_irreducible == pytest.approx(
         np.array(xyz[0]).reshape((11, 1)))
Beispiel #16
0
 def test_is_contained_in(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs'])
     subset = np.array(
         sample_logs_mock['xyz'])[:, 0:
                                  5]  # pick only the first five coordinates
     other_list = PointList(subset)
     assert other_list.is_contained_in(point_list) is True
     assert point_list.is_contained_in(other_list) is False
Beispiel #17
0
 def test_linear_scan_vector(self):
     # vx and vy are only one point, within resolution
     xyz = [[0, 0, 0.003, 0.004, 0], [0, 1, 2, 3, 4],
            [1, 1.001, 1.002, 1.003, 1.009]]
     point_list = PointList(xyz)
     assert point_list.linear_scan_vector(
         resolution=DEFAULT_POINT_RESOLUTION) == pytest.approx([0, 1, 0])
     xyz[0][
         0] = 0.011  # this point is beyond resolution with the rest of the other vx points
     point_list = PointList(xyz)
     assert point_list.linear_scan_vector(
         resolution=DEFAULT_POINT_RESOLUTION) is None
Beispiel #18
0
 def test_is_equal_within_resolution(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs'])
     # perturb the positions of point_list within resolution
     original = np.array(sample_logs_mock['xyz'])
     perturbation = (sample_logs_mock['resolution'] /
                     3.0) * (np.random.random(original.shape) - 0.5)
     other_list = PointList(original + perturbation)
     assert point_list.is_equal_within_resolution(
         other_list, resolution=sample_logs_mock['resolution']) is True
     # perturb the very first coordinate too much
     perturbation[0][0] += 2 * sample_logs_mock['resolution']
     other_list = PointList(original + perturbation)
     assert point_list.is_equal_within_resolution(
         other_list, resolution=sample_logs_mock['resolution']) is False
Beispiel #19
0
def strain_instantiator(name, values, errors, x, y, z):
    return StrainField(name,
                       peak_collection=PeakCollectionLite(name,
                                                          strain=values,
                                                          strain_error=errors),
                       point_list=PointList([x, y, z]))
Beispiel #20
0
    def test_get_indices(self):
        x = [0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5]  # x
        y = [1.0, 1.0, 1.5, 1.5, 1.0, 1.0, 1.5, 1.5]  # y
        z = [2.0, 2.0, 2.0, 2.0, 2.5, 2.5, 2.5, 2.5]  # z
        point_list1 = PointList([x, y, z])

        # changes a single x-value in the last 4 points of point_list1
        x = [0.0, 0.5, 0.0, 0.5, 1.0, 1.5, 1.0, 1.5]  # x
        y = [1.0, 1.0, 1.5, 1.5, 1.0, 1.0, 1.5, 1.5]  # y
        z = [2.0, 2.0, 2.0, 2.0, 2.5, 2.5, 2.5, 2.5]  # z
        point_list2 = PointList([x, y, z])

        # reverse order of point_list1
        x = [0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0]
        y = [1.5, 1.5, 1.0, 1.0, 1.5, 1.5, 1.0, 1.0]
        z = [2.5, 2.5, 2.5, 2.5, 2.0, 2.0, 2.0, 2.0]
        point_list3 = PointList([x, y, z])

        # last three sample points of point_list1
        x = [0.5, 0.0, 0.5]  # x
        y = [1.0, 1.5, 1.5]  # y
        z = [2.5, 2.5, 2.5]  # z
        point_list4 = PointList([x, y, z])

        # indices with self are running numbers
        for point_list in (point_list1, point_list2, point_list3, point_list4):
            np.testing.assert_equal(point_list.get_indices(point_list),
                                    np.arange(len(point_list)))

        # reversing values gets decreasing numbers
        for forward, reverse in zip((point_list1, point_list3),
                                    (point_list3, point_list1)):
            np.testing.assert_equal(forward.get_indices(reverse),
                                    [7, 6, 5, 4, 3, 2, 1, 0])

        # partial matching tests
        np.testing.assert_equal(point_list1.get_indices(point_list2),
                                [0, 1, 2, 3, -1, -1, -1, -1])
        np.testing.assert_equal(point_list3.get_indices(point_list2),
                                [-1, -1, -1, -1, 3, 2, 1, 0])

        np.testing.assert_equal(point_list4.get_indices(point_list1),
                                [5, 6, 7])
        np.testing.assert_equal(point_list4.get_indices(point_list2),
                                [-1, -1, -1])
        np.testing.assert_equal(point_list4.get_indices(point_list3),
                                [2, 1, 0])
Beispiel #21
0
    def test_sorted_indices(self):

        # The two point lists contain a different number of sample points
        point_list = PointList([[0.0, 1.0, 2.0], [0.0, 0.0, 0.0],
                                [0.0, 0.0, 0.0]])
        point_list_other = PointList([[2.0, 0.005], [0.0, 0.0], [0.0, 0.0]])
        with pytest.raises(AssertionError) as exception_info:
            point_list.sorted_indices(point_list=point_list_other,
                                      resolution=DEFAULT_POINT_RESOLUTION)
        assert 'point lists do not contain same number of sample points' in str(
            exception_info.value)

        # Corner case: one of the point lists contains overlapping points
        point_list = PointList([[0.0, 0.009, 1.0], [0.0, 0.0, 0.0],
                                [0.0, 0.0, 0.0]])  # three points, two overlap
        with pytest.raises(ValueError) as exception_info:
            point_list.sorted_indices(point_list=point_list,
                                      resolution=DEFAULT_POINT_RESOLUTION)
        assert 'point lists contains overlapping points' in str(
            exception_info.value)

        # The two point lists are not equal within resolution
        point_list = PointList([[0.0, 1.0, 2.0], [0.0, 0.0, 0.0],
                                [0.0, 0.0, 0.0]])
        point_list_other = PointList([[0.0, 1.1, 2.0], [0.0, 0.0, 0.0],
                                      [0.0, 0.0, 0.0]])
        with pytest.raises(ValueError) as exception_info:
            point_list.sorted_indices(point_list=point_list_other,
                                      resolution=DEFAULT_POINT_RESOLUTION)
        assert 'point lists are not the same, within resolution' in str(
            exception_info.value)

        # Compare against itself
        point_list = PointList([[0.0, 1.0, 2.0], [0.0, 0.0, 0.0],
                                [0.0, 0.0, 0.0]])
        indices = point_list.sorted_indices(
            point_list=point_list, resolution=DEFAULT_POINT_RESOLUTION)
        np.testing.assert_equal(indices, np.array([0, 1, 2]))

        # General case
        point_list = PointList([[0.0, 1.0, 2.0], [0.0, 0.0, 0.0],
                                [0.0, 0.0, 0.0]])
        point_list_other = PointList([[2.0, 0.005, 1.009], [0.0, 0.0, 0.0],
                                      [0.0, 0.0, 0.0]])
        indices = point_list.sorted_indices(
            point_list=point_list_other, resolution=DEFAULT_POINT_RESOLUTION)
        np.testing.assert_equal(indices, np.array([1, 2, 0]))
Beispiel #22
0
 def test_coordinates(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs'])
     np.testing.assert_allclose(
         point_list.coordinates,
         np.array(sample_logs_mock['xyz']).transpose())
Beispiel #23
0
 def test_extents(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs'])
     for i, extent in enumerate(
             point_list.extents(resolution=DEFAULT_POINT_RESOLUTION)):
         assert list(extent) == pytest.approx(
             sample_logs_mock['extents'][i])
Beispiel #24
0
 def test_mgrid(self, sample_logs_mock):
     point_list = PointList(sample_logs_mock['logs'])
     grid_x, grid_y, grid_z = point_list.mgrid(
         resolution=sample_logs_mock['resolution'])
     assert grid_x[0][0] == pytest.approx([-0.6, -0.6, -0.6, -0.6])
     assert grid_x[13][-1] == pytest.approx([0.7, 0.7, 0.7, 0.7])
     assert grid_y[0][0] == pytest.approx([0.495, 0.495, 0.495, 0.495])
     assert grid_y[13][-1] == pytest.approx([0.601, 0.601, 0.601, 0.601])
     assert grid_z[0][0] == pytest.approx([1.498, 1.565, 1.633, 1.700],
                                          abs=0.001)
     assert grid_z[13][-1] == pytest.approx([1.498, 1.565, 1.633, 1.700],
                                            abs=0.001)
     # Test irreducibility option
     # volume scan: all three directions have more than unique point
     xyz = [
         [0.0, 1.000, 1.001, 2.0, 3.0, 4.0, 0.0, 1.0, 2.0, 3.0, 4.0],  # x
         [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0],  # y
         [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0]
     ]  # z
     point_list = PointList(xyz)
     grid = point_list.mgrid(resolution=sample_logs_mock['resolution'],
                             irreducible=True)
     assert grid.shape == (3, 5, 2, 2)
     # Surface scan on the {vx, vy} plane
     xyz[2] = [0] * 11
     point_list = PointList(xyz)
     grid = point_list.mgrid(resolution=sample_logs_mock['resolution'],
                             irreducible=True)
     assert grid.shape == (2, 5, 2)
     # Linear scan on the vx axis
     xyz[1] = [0] * 11
     point_list = PointList(xyz)
     grid = point_list.mgrid(resolution=sample_logs_mock['resolution'],
                             irreducible=True)
     assert grid.shape == (1, 5)