Beispiel #1
0
 def __init__(self, neighbors, weights=None, id_order=None, silent_island_warning=False):
     self.silent_island_warning = silent_island_warning
     self.transformations = {}
     self.neighbors = ROD(neighbors)
     if not weights:
         weights = {}
         for key in neighbors:
             weights[key] = [1.] * len(neighbors[key])
     self.weights = ROD(weights)
     self.transformations['O'] = self.weights  # original weights
     self.transform = 'O'
     if id_order is None:
         self._id_order = self.neighbors.keys()
         self._id_order.sort()
         self._id_order_set = False
     else:
         self._id_order = id_order
         self._id_order_set = True
     self._reset()
     self._n = len(self.weights)
     if self.islands and not self.silent_island_warning:
         ni = len(self.islands)
         if ni == 1:
             print "WARNING: there is one disconnected observation (no neighbors)"
             print "Island id: ",self.islands
         else:
             print "WARNING: there are %d disconnected observations"%ni
             print "Island ids: ",self.islands
Beispiel #2
0
 def __init__(self, neighbors, weights=None, id_order=None):
     self.transformations = {}
     self.neighbors = ROD(neighbors)
     if not weights:
         weights = {}
         for key in neighbors:
             weights[key] = [1.] * len(neighbors[key])
     self.weights = ROD(weights)
     self.transformations['O'] = self.weights  # original weights
     self.transform = 'O'
     if id_order is None:
         self._id_order = self.neighbors.keys()
         self._id_order.sort()
         self._id_order_set = False
     else:
         self._id_order = id_order
         self._id_order_set = True
     self._reset()
     self._n = len(self.weights)
Beispiel #3
0
 def id2i(self):
     """
     Dictionary where the key is an ID and the value is that ID's
     index in W.id_order.
     """
     if 'id2i' not in self._cache:
         self._id2i = {}
         for i, id in enumerate(self._id_order):
             self._id2i[id] = i
         self._id2i = ROD(self._id2i)
         self._cache['id2i'] = self._id2i
     return self._id2i
Beispiel #4
0
 def __init__(self, neighbors, weights=None, id_order=None):
     self.transformations = {}
     self.neighbors = ROD(neighbors)
     if not weights:
         weights = {}
         for key in neighbors:
             weights[key] = [1.] * len(neighbors[key])
     self.weights = ROD(weights)
     self.transformations['O'] = self.weights  # original weights
     self.transform = 'O'
     if id_order is None:
         self._id_order = self.neighbors.keys()
         self._id_order.sort()
         self._id_order_set = False
     else:
         self._id_order = id_order
         self._id_order_set = True
     self._reset()
     self._n = len(self.weights)
Beispiel #5
0
class W(object):
    """
    Spatial weights

    Parameters
    ----------
    neighbors       : dictionary
                      key is region ID, value is a list of neighbor IDS
                      Example:  {'a':['b'],'b':['a','c'],'c':['b']}
    weights = None  : dictionary
                      key is region ID, value is a list of edge weights
                      If not supplied all edge weights are assumed to have a weight of 1.
                      Example: {'a':[0.5],'b':[0.5,1.5],'c':[1.5]}
    id_order = None : list
                      An ordered list of ids, defines the order of
                      observations when iterating over W if not set,
                      lexicographical ordering is used to iterate and the
                      id_order_set property will return False.  This can be
                      set after creation by setting the 'id_order' property.

    Attributes
    ----------

    asymmetries
    cardinalities
    diagW2
    diagWtW
    diagWtW_WW
    histogram
    id2i
    id_order
    id_order_set
    islands
    max_neighbors
    mean_neighbors
    min_neighbors
    n
    neighbor_offsets
    nonzero
    pct_nonzero
    s0
    s1
    s2
    s2array
    sd
    sparse
    trcW2
    trcWtW
    trcWtW_WW
    transform





    Examples
    --------
    >>> from pysal import W, lat2W
    >>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]}
    >>> weights = {0: [1, 1], 1: [1, 1, 1], 2: [1, 1], 3: [1, 1, 1], 4: [1, 1, 1, 1], 5: [1, 1, 1], 6: [1, 1], 7: [1, 1, 1], 8: [1, 1]}
    >>> w = W(neighbors, weights)
    >>> w.pct_nonzero
    0.29629629629629628

    Read from external gal file

    >>> import pysal
    >>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
    >>> w.n
    78
    >>> w.pct_nonzero
    0.065417488494411577

    Set weights implicitly

    >>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]}
    >>> w = W(neighbors)
    >>> w.pct_nonzero
    0.29629629629629628
    >>> w = lat2W(100, 100)
    >>> w.trcW2
    39600.0
    >>> w.trcWtW
    39600.0
    >>> w.transform='r'
    >>> w.trcW2
    2530.7222222222586
    >>> w.trcWtW
    2533.6666666666774

    Cardinality Histogram

    >>> w=pysal.rook_from_shapefile(pysal.examples.get_path("sacramentot2.shp"))
    >>> w.histogram
    [(1, 1), (2, 6), (3, 33), (4, 103), (5, 114), (6, 73), (7, 35), (8, 17), (9, 9), (10, 4), (11, 4), (12, 3), (13, 0), (14, 1)]

    """
    def __init__(self, neighbors, weights=None, id_order=None):
        self.transformations = {}
        self.neighbors = ROD(neighbors)
        if not weights:
            weights = {}
            for key in neighbors:
                weights[key] = [1.] * len(neighbors[key])
        self.weights = ROD(weights)
        self.transformations['O'] = self.weights  # original weights
        self.transform = 'O'
        if id_order is None:
            self._id_order = self.neighbors.keys()
            self._id_order.sort()
            self._id_order_set = False
        else:
            self._id_order = id_order
            self._id_order_set = True
        self._reset()
        self._n = len(self.weights)

    def _reset(self):
        """
        Reset properties
        """
        self._cache = {}

    @property
    def sparse(self):
        """
        Sparse matrix object

        For any matrix manipulations required for w, w.sparse should be
        used. This is based on scipy.sparse.
        """
        if 'sparse' not in self._cache:
            self._sparse = self._build_sparse()
            self._cache['sparse'] = self._sparse
        return self._sparse

    def _build_sparse(self):
        """
        construct the sparse attribute
        """

        row = []
        col = []
        data = []
        gc.disable()
        id2i = self.id2i
        for id, neigh_list in self.neighbor_offsets.iteritems():
            card = self.cardinalities[id]
            row.extend([id2i[id]] * card)
            col.extend(neigh_list)
            data.extend(self.weights[id])
        gc.enable()
        row = np.array(row)
        col = np.array(col)
        data = np.array(data)
        s = scipy.sparse.csr_matrix((data, (row, col)), shape=(self.n, self.n))
        return s

    @property
    def id2i(self):
        """
        Dictionary where the key is an ID and the value is that ID's
        index in W.id_order.
        """
        if 'id2i' not in self._cache:
            self._id2i = {}
            for i, id in enumerate(self._id_order):
                self._id2i[id] = i
            self._id2i = ROD(self._id2i)
            self._cache['id2i'] = self._id2i
        return self._id2i

    @property
    def n(self):
        """
        number of units
        """
        if "n" not in self._cache:
            self._n = len(self.neighbors)
            self._cache['n'] = self._n
        return self._n

    @property
    def s0(self):
        """
        float

        .. math::

               s0=\sum_i \sum_j w_{i,j}

        """
        if 's0' not in self._cache:
            self._s0 = self.sparse.sum()
            self._cache['s0'] = self._s0
        return self._s0

    @property
    def s1(self):
        """
        float

        .. math::

               s1=1/2 \sum_i \sum_j (w_{i,j} + w_{j,i})^2

        """
        if 's1' not in self._cache:
            t = self.sparse.transpose()
            t = t + self.sparse
            t2 = t.multiply(t)  # element-wise square
            self._s1 = t2.sum() / 2.
            self._cache['s1'] = self._s1
        return self._s1

    @property
    def s2array(self):
        """
        individual elements comprising s2


        See Also
        --------
        s2

        """
        if 's2array' not in self._cache:
            s = self.sparse
            self._s2array = np.array(s.sum(1) + s.sum(0).transpose()) ** 2
            self._cache['s2array'] = self._s2array
        return self._s2array

    @property
    def s2(self):
        """
        float


        .. math::

                s2=\sum_j (\sum_i w_{i,j} + \sum_i w_{j,i})^2

        """
        if 's2' not in self._cache:
            self._s2 = self.s2array.sum()
            self._cache['s2'] = self._s2
        return self._s2

    @property
    def trcW2(self):
        """
        Trace of :math:`WW`

        See Also
        --------
        diagW2

        """
        if 'trcW2' not in self._cache:
            self._trcW2 = self.diagW2.sum()
            self._cache['trcw2'] = self._trcW2
        return self._trcW2

    @property
    def diagW2(self):
        """
        Diagonal of :math:`WW` : array

        See Also
        --------
        trcW2

        """
        if 'diagw2' not in self._cache:
            self._diagW2 = (self.sparse * self.sparse).diagonal()
            self._cache['diagW2'] = self._diagW2
        return self._diagW2

    @property
    def diagWtW(self):
        """
        Diagonal of :math:`W^{'}W`  : array

        See Also
        --------
        trcWtW

        """
        if 'diagWtW' not in self._cache:
            self._diagWtW = (self.sparse.transpose() * self.sparse).diagonal()
            self._cache['diagWtW'] = self._diagWtW
        return self._diagWtW

    @property
    def trcWtW(self):
        """
        Trace of :math:`W^{'}W`  : float

        See Also
        --------
        diagWtW

        """
        if 'trcWtW' not in self._cache:
            self._trcWtW = self.diagWtW.sum()
            self._cache['trcWtW'] = self._trcWtW
        return self._trcWtW

    @property
    def diagWtW_WW(self):
        """
        diagonal of :math:`W^{'}W + WW`
        """
        if 'diagWtW_WW' not in self._cache:
            wt = self.sparse.transpose()
            w = self.sparse
            self._diagWtW_WW = (wt * w + w * w).diagonal()
            self._cache['diagWtW_WW'] = self._diagWtW_WW
        return self._diagWtW_WW

    @property
    def trcWtW_WW(self):
        """
        trace of :math:`W^{'}W + WW`
        """
        if 'trcWtW_WW' not in self._cache:
            self._trcWtW_WW = self.diagWtW_WW.sum()
            self._cache['trcWtW_WW'] = self._trcWtW_WW
        return self._trcWtW_WW

    @property
    def pct_nonzero(self):
        """
        percentage of nonzero weights
        """
        if 'pct_nonzero' not in self._cache:
            self._pct_nonzero = self.sparse.nnz / (1. * self._n ** 2)
            self._cache['pct_nonzero'] = self._pct_nonzero
        return self._pct_nonzero

    @property
    def cardinalities(self):
        """
        number of neighbors for each observation : dict
        """
        if 'cardinalities' not in self._cache:
            c = {}
            for i in self._id_order:
                c[i] = len(self.neighbors[i])
            self._cardinalities = c
            self._cache['cardinalities'] = self._cardinalities
        return self._cardinalities

    @property
    def max_neighbors(self):
        """
        largest number of neighbors
        """
        if 'max_neighbors' not in self._cache:
            self._max_neighbors = max(self.cardinalities.values())
            self._cache['max_neighbors'] = self._max_neighbors
        return self._max_neighbors

    @property
    def mean_neighbors(self):
        """
        average number of neighbors
        """
        if 'mean_neighbors' not in self._cache:
            self._mean_neighbors = np.mean(self.cardinalities.values())
            self._cache['mean_neighbors'] = self._mean_neighbors
        return self._mean_neighbors

    @property
    def min_neighbors(self):
        """
        minimum number of neighbors
        """
        if 'min_neighbors' not in self._cache:
            self._min_neighbors = min(self.cardinalities.values())
            self._cache['min_neighbors'] = self._min_neighbors
        return self._min_neighbors

    @property
    def nonzero(self):
        """
        number of nonzero weights
        """
        if 'nonzero' not in self._cache:
            self._nonzero = self.sparse.nnz
            self._cache['nonzero'] = self._nonzero
        return self._nonzero

    @property
    def sd(self):
        """
        standard deviation of number of neighbors : float
        """
        if 'sd' not in self._cache:
            self._sd = np.std(self.cardinalities.values())
            self._cache['sd'] = self._sd
        return self._sd

    @property
    def asymmetries(self):
        """
        list of id pairs with asymmetric weights
        """
        if 'asymmetries' not in self._cache:
            self._asymmetries = self.asymmetry()
            self._cache['asymmetries'] = self._asymmetries
        return self._asymmetries

    @property
    def islands(self):
        """
        list of ids without any neighbors
        """
        if 'islands' not in self._cache:
            self._islands = [i for i,
                             c in self.cardinalities.items() if c == 0]
            self._cache['islands'] = self._islands
        return self._islands

    @property
    def histogram(self):
        """
        cardinality histogram as a dictionary, key is the id, value is the
        number of neighbors for that unit
        """
        if 'histogram' not in self._cache:
            ct, bin = np.histogram(self.cardinalities.values(),
                                   range(self.min_neighbors, self.max_neighbors + 2))
            self._histogram = zip(bin, ct)
            self._cache['histogram'] = self._histogram
        return self._histogram

    def __getitem__(self, key):
        """
        Allow a dictionary like interaction with the weights class.

        Examples
        --------
        >>> from pysal import rook_from_shapefile as rfs
        >>> from pysal import lat2W
        >>> w = rfs(pysal.examples.get_path('10740.shp'))
        >>> w[0]
        {1: 1.0, 4: 1.0, 101: 1.0, 85: 1.0, 5: 1.0}
        >>> w = lat2W()
        >>> w[1]
        {0: 1.0, 2: 1.0, 6: 1.0}
        >>> w[0]
        {1: 1.0, 5: 1.0}
        """
        return dict(zip(self.neighbors[key], self.weights[key]))

    def __iter__(self):
        """
        Support iteration over weights

        Examples
        --------
        >>> import pysal
        >>> w=pysal.lat2W(3,3)
        >>> for i,wi in enumerate(w):
        ...     print i,wi
        ...
        0 {1: 1.0, 3: 1.0}
        1 {0: 1.0, 2: 1.0, 4: 1.0}
        2 {1: 1.0, 5: 1.0}
        3 {0: 1.0, 4: 1.0, 6: 1.0}
        4 {1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0}
        5 {8: 1.0, 2: 1.0, 4: 1.0}
        6 {3: 1.0, 7: 1.0}
        7 {8: 1.0, 4: 1.0, 6: 1.0}
        8 {5: 1.0, 7: 1.0}
        >>>
        """
        class _W_iter:
            def __init__(self, w):
                self.w = w
                self.n = len(w._id_order)
                self._idx = 0

            def next(self):
                if self._idx >= self.n:
                    self._idx = 0
                    raise StopIteration
                value = self.w.__getitem__(self.w._id_order[self._idx])
                self._idx += 1
                return value
        return _W_iter(self)

    def __set_id_order(self, ordered_ids):
        """
        Set the iteration order in w.

        W can be iterated over. On construction the iteration order is set to
        the lexicographic order of the keys in the w.weights dictionary. If a specific order
        is required it can be set with this method.

        Parameters
        ----------

        ordered_ids : sequence
                      identifiers for observations in specified order

        Notes
        -----

        ordered_ids is checked against the ids implied by the keys in
        w.weights. If they are not equivalent sets an exception is raised and
        the iteration order is not changed.

        Examples
        --------

        >>> import pysal
        >>> w=pysal.lat2W(3,3)
        >>> for i,wi in enumerate(w):
        ...     print i,wi
        ...
        0 {1: 1.0, 3: 1.0}
        1 {0: 1.0, 2: 1.0, 4: 1.0}
        2 {1: 1.0, 5: 1.0}
        3 {0: 1.0, 4: 1.0, 6: 1.0}
        4 {1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0}
        5 {8: 1.0, 2: 1.0, 4: 1.0}
        6 {3: 1.0, 7: 1.0}
        7 {8: 1.0, 4: 1.0, 6: 1.0}
        8 {5: 1.0, 7: 1.0}

        >>> w.id_order
        [0, 1, 2, 3, 4, 5, 6, 7, 8]
        >>> w.id_order=range(8,-1,-1)
        >>> w.id_order
        [8, 7, 6, 5, 4, 3, 2, 1, 0]
        >>> for i,w_i in enumerate(w):
        ...     print i,w_i
        ...
        0 {5: 1.0, 7: 1.0}
        1 {8: 1.0, 4: 1.0, 6: 1.0}
        2 {3: 1.0, 7: 1.0}
        3 {8: 1.0, 2: 1.0, 4: 1.0}
        4 {1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0}
        5 {0: 1.0, 4: 1.0, 6: 1.0}
        6 {1: 1.0, 5: 1.0}
        7 {0: 1.0, 2: 1.0, 4: 1.0}
        8 {1: 1.0, 3: 1.0}
        >>>

        """
        if set(self._id_order) == set(ordered_ids):
            self._id_order = ordered_ids
            self._idx = 0
            self._id_order_set = True
            self._reset()
        else:
            raise Exception('ordered_ids do not align with W ids')

    def __get_id_order(self):
        """returns the ids for the observations in the order in which they
        would be encountered if iterating over the weights."""
        return self._id_order

    id_order = property(__get_id_order, __set_id_order)

    @property
    def id_order_set(self):
        """returns True if user has set id_order, False if not.

        Examples
        --------
        >>> from pysal import lat2W
        >>> w=lat2W()
        >>> w.id_order_set
        True
        """
        return self._id_order_set

    @property
    def neighbor_offsets(self):
        """
        Given the current id_order, neighbor_offsets[id] is the offsets of the
        id's neighbors in id_order

        Examples
        --------
        >>> from pysal import W
        >>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
        >>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
        >>> w=W(neighbors,weights)
        >>> w.id_order = ['a','b','c']
        >>> w.neighbor_offsets['b']
        [2, 0]
        >>> w.id_order = ['b','a','c']
        >>> w.neighbor_offsets['b']
        [2, 1]
        """
        if "neighbors_0" not in self._cache:
            self.__neighbors_0 = {}
            id2i = self.id2i
            for id, neigh_list in self.neighbors.iteritems():
                self.__neighbors_0[id] = [id2i[neigh] for neigh in neigh_list]
            self._cache['neighbors_0'] = self.__neighbors_0
        return self.__neighbors_0

    def get_transform(self):
        """
        Getter for transform property

        Returns
        -------
        transformation : string (or none)

        Examples
        --------
        >>> from pysal import lat2W
        >>> w=lat2W()
        >>> w.weights[0]
        [1.0, 1.0]
        >>> w.transform
        'O'
        >>> w.transform='r'
        >>> w.weights[0]
        [0.5, 0.5]
        >>> w.transform='b'
        >>> w.weights[0]
        [1.0, 1.0]
        >>>
        """
        return self._transform

    def set_transform(self, value="B"):
        """
        Transformations of weights.

        Notes
        -----

        Transformations are applied only to the value of the weights at
        instantiation. Chaining of transformations cannot be done on a W
        instance.

        Parameters
        ----------
        transform : string (not case sensitive)
                    B: Binary
                    R: Row-standardization (global sum=n)
                    D: Double-standardization (global sum=1)
                    V: Variance stabilizing
                    O: Restore original transformation (from instantiation)

        Examples
        --------
        >>> from pysal import lat2W
        >>> w=lat2W()
        >>> w.weights[0]
        [1.0, 1.0]
        >>> w.transform
        'O'
        >>> w.transform='r'
        >>> w.weights[0]
        [0.5, 0.5]
        >>> w.transform='b'
        >>> w.weights[0]
        [1.0, 1.0]
        >>>
        """
        value = value.upper()
        self._transform = value
        if value in self.transformations:
            self.weights = self.transformations[value]
            self._reset()
        else:
            if value == "R":
                # row standardized weights
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    row_sum = sum(wijs) * 1.0
                    weights[i] = [wij / row_sum for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "D":
                # doubly-standardized weights
                # update current chars before doing global sum
                self._reset()
                s0 = self.s0
                ws = 1.0 / s0
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    weights[i] = [wij * ws for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "B":
                # binary transformation
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    weights[i] = [1.0 for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "V":
                # variance stabilizing
                weights = {}
                q = {}
                k = self.cardinalities
                s = {}
                Q = 0.0
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    q[i] = math.sqrt(sum([wij * wij for wij in wijs]))
                    s[i] = [wij / q[i] for wij in wijs]
                    Q += sum([si for si in s[i]])
                nQ = self.n / Q
                for i in self.weights:
                    weights[i] = [w * nQ for w in s[i]]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "O":
                # put weights back to original transformation
                weights = {}
                original = self.transformations[value]
                self.weights = original
                self._reset()
            else:
                print 'unsupported weights transformation'

    transform = property(get_transform, set_transform)

    def asymmetry(self, intrinsic=True):
        """
        Asymmetry check

        Arguments
        ---------
        intrinsic: boolean (default=True)
                
                intrinsic symmetry:
                      :math:`w_{i,j} == w_{j,i}`

                if intrisic is False:
                    symmetry is defined as :math:`i \in N_j \ AND \ j \in N_i` where
                    :math:`N_j` is the set of neighbors for j.
            
        Returns
        -------
        asymmetries : list
                      empty if no asymmetries are found
                      if asymmetries, first list is row indices, second
                      list is column indices of asymmetric cells

        Examples
        --------

        >>> from pysal import lat2W
        >>> w=lat2W(3,3)
        >>> w.asymmetry()
        []
        >>> w.transform='r'
        >>> result = w.asymmetry()[0:2]
        >>> print result[0]
        [1 3 0 2 4 1 5 0 4 6 1 3 5 7 2 4 8 3 7 4 6 8 5 7]
        >>> print result[1]
        [0 0 1 1 1 2 2 3 3 3 4 4 4 4 5 5 5 6 6 7 7 7 8 8]
        >>> result = w.asymmetry(intrinsic=False)
        >>> result
        []
        >>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]}
        >>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]}
        >>> w=W(neighbors,weights)
        >>> result = w.asymmetry()
        >>> print result[0]
        [1 0]
        >>> print result[1]
        [0 1]
        """

        if intrinsic:
            wd = self.sparse.transpose() - self.sparse
        else:
            transform = self.transform
            self.transform = 'b'
            wd = self.sparse.transpose() - self.sparse
            self.transform = transform

        ids = np.nonzero(wd)
        if len(ids[0]) == 0:
            return []
        else:
            return ids


    def full(self):
        """
        Generate a full numpy array

        Returns
        -------

        implicit : tuple
                   first element being the full numpy array and second element
                   keys being the ids associated with each row in the array.



        Examples
        --------
        >>> from pysal import W
        >>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
        >>> weights={'first':[1],'second':[1,1],'third':[1]}
        >>> w=W(neighbors,weights)
        >>> wf,ids=w.full()
        >>> wf
        array([[ 0.,  1.,  0.],
               [ 1.,  0.,  1.],
               [ 0.,  1.,  0.]])
        >>> ids
        ['first', 'second', 'third']

        See also
        --------
        full
        """
        return util.full(self)
Beispiel #6
0
    def set_transform(self, value="B"):
        """
        Transformations of weights.

        Notes
        -----

        Transformations are applied only to the value of the weights at
        instantiation. Chaining of transformations cannot be done on a W
        instance.

        Parameters
        ----------
        transform : string (not case sensitive)
                    B: Binary
                    R: Row-standardization (global sum=n)
                    D: Double-standardization (global sum=1)
                    V: Variance stabilizing
                    O: Restore original transformation (from instantiation)

        Examples
        --------
        >>> from pysal import lat2W
        >>> w=lat2W()
        >>> w.weights[0]
        [1.0, 1.0]
        >>> w.transform
        'O'
        >>> w.transform='r'
        >>> w.weights[0]
        [0.5, 0.5]
        >>> w.transform='b'
        >>> w.weights[0]
        [1.0, 1.0]
        >>>
        """
        value = value.upper()
        self._transform = value
        if value in self.transformations:
            self.weights = self.transformations[value]
            self._reset()
        else:
            if value == "R":
                # row standardized weights
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    row_sum = sum(wijs) * 1.0
                    weights[i] = [wij / row_sum for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "D":
                # doubly-standardized weights
                # update current chars before doing global sum
                self._reset()
                s0 = self.s0
                ws = 1.0 / s0
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    weights[i] = [wij * ws for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "B":
                # binary transformation
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    weights[i] = [1.0 for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "V":
                # variance stabilizing
                weights = {}
                q = {}
                k = self.cardinalities
                s = {}
                Q = 0.0
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    q[i] = math.sqrt(sum([wij * wij for wij in wijs]))
                    s[i] = [wij / q[i] for wij in wijs]
                    Q += sum([si for si in s[i]])
                nQ = self.n / Q
                for i in self.weights:
                    weights[i] = [w * nQ for w in s[i]]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "O":
                # put weights back to original transformation
                weights = {}
                original = self.transformations[value]
                self.weights = original
                self._reset()
            else:
                print 'unsupported weights transformation'
Beispiel #7
0
class W(object):
    """
    Spatial weights

    Parameters
    ----------
    neighbors       : dictionary
                      key is region ID, value is a list of neighbor IDS
                      Example:  {'a':['b'],'b':['a','c'],'c':['b']}
    weights = None  : dictionary
                      key is region ID, value is a list of edge weights
                      If not supplied all edge weights are assumed to have a weight of 1.
                      Example: {'a':[0.5],'b':[0.5,1.5],'c':[1.5]}
    id_order = None : list
                      An ordered list of ids, defines the order of
                      observations when iterating over W if not set,
                      lexicographical ordering is used to iterate and the
                      id_order_set property will return False.  This can be
                      set after creation by setting the 'id_order' property.

    Attributes
    ----------

    asymmetries
    cardinalities
    diagW2
    diagWtW
    diagWtW_WW
    histogram
    id2i
    id_order
    id_order_set
    islands
    max_neighbors
    mean_neighbors
    min_neighbors
    n
    neighbor_offsets
    nonzero
    pct_nonzero
    s0
    s1
    s2
    s2array
    sd
    sparse
    trcW2
    trcWtW
    trcWtW_WW
    transform





    Examples
    --------
    >>> from pysal import W, lat2W
    >>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]}
    >>> weights = {0: [1, 1], 1: [1, 1, 1], 2: [1, 1], 3: [1, 1, 1], 4: [1, 1, 1, 1], 5: [1, 1, 1], 6: [1, 1], 7: [1, 1, 1], 8: [1, 1]}
    >>> w = W(neighbors, weights)
    >>> w.pct_nonzero
    0.29629629629629628

    Read from external gal file

    >>> import pysal
    >>> w = pysal.open(pysal.examples.get_path("stl.gal")).read()
    >>> w.n
    78
    >>> w.pct_nonzero
    0.065417488494411577

    Set weights implicitly

    >>> neighbors = {0: [3, 1], 1: [0, 4, 2], 2: [1, 5], 3: [0, 6, 4], 4: [1, 3, 7, 5], 5: [2, 4, 8], 6: [3, 7], 7: [4, 6, 8], 8: [5, 7]}
    >>> w = W(neighbors)
    >>> w.pct_nonzero
    0.29629629629629628
    >>> w = lat2W(100, 100)
    >>> w.trcW2
    39600.0
    >>> w.trcWtW
    39600.0
    >>> w.transform='r'
    >>> w.trcW2
    2530.7222222222586
    >>> w.trcWtW
    2533.6666666666774

    Cardinality Histogram

    >>> w=pysal.rook_from_shapefile(pysal.examples.get_path("sacramentot2.shp"))
    >>> w.histogram
    [(1, 1), (2, 6), (3, 33), (4, 103), (5, 114), (6, 73), (7, 35), (8, 17), (9, 9), (10, 4), (11, 4), (12, 3), (13, 0), (14, 1)]

    """
    def __init__(self, neighbors, weights=None, id_order=None):
        self.transformations = {}
        self.neighbors = ROD(neighbors)
        if not weights:
            weights = {}
            for key in neighbors:
                weights[key] = [1.] * len(neighbors[key])
        self.weights = ROD(weights)
        self.transformations['O'] = self.weights  # original weights
        self.transform = 'O'
        if id_order is None:
            self._id_order = self.neighbors.keys()
            self._id_order.sort()
            self._id_order_set = False
        else:
            self._id_order = id_order
            self._id_order_set = True
        self._reset()
        self._n = len(self.weights)

    def _reset(self):
        """
        Reset properties
        """
        self._cache = {}

    @property
    def sparse(self):
        """
        Sparse matrix object

        For any matrix manipulations required for w, w.sparse should be
        used. This is based on scipy.sparse.
        """
        if 'sparse' not in self._cache:
            self._sparse = self._build_sparse()
            self._cache['sparse'] = self._sparse
        return self._sparse

    def _build_sparse(self):
        """
        construct the sparse attribute
        """

        row = []
        col = []
        data = []
        gc.disable()
        id2i = self.id2i
        for id, neigh_list in self.neighbor_offsets.iteritems():
            card = self.cardinalities[id]
            row.extend([id2i[id]] * card)
            col.extend(neigh_list)
            data.extend(self.weights[id])
        gc.enable()
        row = np.array(row)
        col = np.array(col)
        data = np.array(data)
        s = scipy.sparse.csr_matrix((data, (row, col)), shape=(self.n, self.n))
        return s

    @property
    def id2i(self):
        """
        Dictionary where the key is an ID and the value is that ID's
        index in W.id_order.
        """
        if 'id2i' not in self._cache:
            self._id2i = {}
            for i, id in enumerate(self._id_order):
                self._id2i[id] = i
            self._id2i = ROD(self._id2i)
            self._cache['id2i'] = self._id2i
        return self._id2i

    @property
    def n(self):
        """
        number of units
        """
        if "n" not in self._cache:
            self._n = len(self.neighbors)
            self._cache['n'] = self._n
        return self._n

    @property
    def s0(self):
        """
        float

        .. math::

               s0=\sum_i \sum_j w_{i,j}

        """
        if 's0' not in self._cache:
            self._s0 = self.sparse.sum()
            self._cache['s0'] = self._s0
        return self._s0

    @property
    def s1(self):
        """
        float

        .. math::

               s1=1/2 \sum_i \sum_j (w_{i,j} + w_{j,i})^2

        """
        if 's1' not in self._cache:
            t = self.sparse.transpose()
            t = t + self.sparse
            t2 = t.multiply(t)  # element-wise square
            self._s1 = t2.sum() / 2.
            self._cache['s1'] = self._s1
        return self._s1

    @property
    def s2array(self):
        """
        individual elements comprising s2


        See Also
        --------
        s2

        """
        if 's2array' not in self._cache:
            s = self.sparse
            self._s2array = np.array(s.sum(1) + s.sum(0).transpose())**2
            self._cache['s2array'] = self._s2array
        return self._s2array

    @property
    def s2(self):
        """
        float


        .. math::

                s2=\sum_j (\sum_i w_{i,j} + \sum_i w_{j,i})^2

        """
        if 's2' not in self._cache:
            self._s2 = self.s2array.sum()
            self._cache['s2'] = self._s2
        return self._s2

    @property
    def trcW2(self):
        """
        Trace of :math:`WW`

        See Also
        --------
        diagW2

        """
        if 'trcW2' not in self._cache:
            self._trcW2 = self.diagW2.sum()
            self._cache['trcw2'] = self._trcW2
        return self._trcW2

    @property
    def diagW2(self):
        """
        Diagonal of :math:`WW` : array

        See Also
        --------
        trcW2

        """
        if 'diagw2' not in self._cache:
            self._diagW2 = (self.sparse * self.sparse).diagonal()
            self._cache['diagW2'] = self._diagW2
        return self._diagW2

    @property
    def diagWtW(self):
        """
        Diagonal of :math:`W^{'}W`  : array

        See Also
        --------
        trcWtW

        """
        if 'diagWtW' not in self._cache:
            self._diagWtW = (self.sparse.transpose() * self.sparse).diagonal()
            self._cache['diagWtW'] = self._diagWtW
        return self._diagWtW

    @property
    def trcWtW(self):
        """
        Trace of :math:`W^{'}W`  : float

        See Also
        --------
        diagWtW

        """
        if 'trcWtW' not in self._cache:
            self._trcWtW = self.diagWtW.sum()
            self._cache['trcWtW'] = self._trcWtW
        return self._trcWtW

    @property
    def diagWtW_WW(self):
        """
        diagonal of :math:`W^{'}W + WW`
        """
        if 'diagWtW_WW' not in self._cache:
            wt = self.sparse.transpose()
            w = self.sparse
            self._diagWtW_WW = (wt * w + w * w).diagonal()
            self._cache['diagWtW_WW'] = self._diagWtW_WW
        return self._diagWtW_WW

    @property
    def trcWtW_WW(self):
        """
        trace of :math:`W^{'}W + WW`
        """
        if 'trcWtW_WW' not in self._cache:
            self._trcWtW_WW = self.diagWtW_WW.sum()
            self._cache['trcWtW_WW'] = self._trcWtW_WW
        return self._trcWtW_WW

    @property
    def pct_nonzero(self):
        """
        percentage of nonzero weights
        """
        if 'pct_nonzero' not in self._cache:
            self._pct_nonzero = self.sparse.nnz / (1. * self._n**2)
            self._cache['pct_nonzero'] = self._pct_nonzero
        return self._pct_nonzero

    @property
    def cardinalities(self):
        """
        number of neighbors for each observation : dict
        """
        if 'cardinalities' not in self._cache:
            c = {}
            for i in self._id_order:
                c[i] = len(self.neighbors[i])
            self._cardinalities = c
            self._cache['cardinalities'] = self._cardinalities
        return self._cardinalities

    @property
    def max_neighbors(self):
        """
        largest number of neighbors
        """
        if 'max_neighbors' not in self._cache:
            self._max_neighbors = max(self.cardinalities.values())
            self._cache['max_neighbors'] = self._max_neighbors
        return self._max_neighbors

    @property
    def mean_neighbors(self):
        """
        average number of neighbors
        """
        if 'mean_neighbors' not in self._cache:
            self._mean_neighbors = np.mean(self.cardinalities.values())
            self._cache['mean_neighbors'] = self._mean_neighbors
        return self._mean_neighbors

    @property
    def min_neighbors(self):
        """
        minimum number of neighbors
        """
        if 'min_neighbors' not in self._cache:
            self._min_neighbors = min(self.cardinalities.values())
            self._cache['min_neighbors'] = self._min_neighbors
        return self._min_neighbors

    @property
    def nonzero(self):
        """
        number of nonzero weights
        """
        if 'nonzero' not in self._cache:
            self._nonzero = self.sparse.nnz
            self._cache['nonzero'] = self._nonzero
        return self._nonzero

    @property
    def sd(self):
        """
        standard deviation of number of neighbors : float
        """
        if 'sd' not in self._cache:
            self._sd = np.std(self.cardinalities.values())
            self._cache['sd'] = self._sd
        return self._sd

    @property
    def asymmetries(self):
        """
        list of id pairs with asymmetric weights
        """
        if 'asymmetries' not in self._cache:
            self._asymmetries = self.asymmetry()
            self._cache['asymmetries'] = self._asymmetries
        return self._asymmetries

    @property
    def islands(self):
        """
        list of ids without any neighbors
        """
        if 'islands' not in self._cache:
            self._islands = [
                i for i, c in self.cardinalities.items() if c == 0
            ]
            self._cache['islands'] = self._islands
        return self._islands

    @property
    def histogram(self):
        """
        cardinality histogram as a dictionary, key is the id, value is the
        number of neighbors for that unit
        """
        if 'histogram' not in self._cache:
            ct, bin = np.histogram(
                self.cardinalities.values(),
                range(self.min_neighbors, self.max_neighbors + 2))
            self._histogram = zip(bin, ct)
            self._cache['histogram'] = self._histogram
        return self._histogram

    def __getitem__(self, key):
        """
        Allow a dictionary like interaction with the weights class.

        Examples
        --------
        >>> from pysal import rook_from_shapefile as rfs
        >>> from pysal import lat2W
        >>> w = rfs(pysal.examples.get_path('10740.shp'))
        >>> w[0]
        {1: 1.0, 4: 1.0, 101: 1.0, 85: 1.0, 5: 1.0}
        >>> w = lat2W()
        >>> w[1]
        {0: 1.0, 2: 1.0, 6: 1.0}
        >>> w[0]
        {1: 1.0, 5: 1.0}
        """
        return dict(zip(self.neighbors[key], self.weights[key]))

    def __iter__(self):
        """
        Support iteration over weights

        Examples
        --------
        >>> import pysal
        >>> w=pysal.lat2W(3,3)
        >>> for i,wi in enumerate(w):
        ...     print i,wi
        ...
        0 {1: 1.0, 3: 1.0}
        1 {0: 1.0, 2: 1.0, 4: 1.0}
        2 {1: 1.0, 5: 1.0}
        3 {0: 1.0, 4: 1.0, 6: 1.0}
        4 {1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0}
        5 {8: 1.0, 2: 1.0, 4: 1.0}
        6 {3: 1.0, 7: 1.0}
        7 {8: 1.0, 4: 1.0, 6: 1.0}
        8 {5: 1.0, 7: 1.0}
        >>>
        """
        class _W_iter:
            def __init__(self, w):
                self.w = w
                self.n = len(w._id_order)
                self._idx = 0

            def next(self):
                if self._idx >= self.n:
                    self._idx = 0
                    raise StopIteration
                value = self.w.__getitem__(self.w._id_order[self._idx])
                self._idx += 1
                return value

        return _W_iter(self)

    def __set_id_order(self, ordered_ids):
        """
        Set the iteration order in w.

        W can be iterated over. On construction the iteration order is set to
        the lexicographic order of the keys in the w.weights dictionary. If a specific order
        is required it can be set with this method.

        Parameters
        ----------

        ordered_ids : sequence
                      identifiers for observations in specified order

        Notes
        -----

        ordered_ids is checked against the ids implied by the keys in
        w.weights. If they are not equivalent sets an exception is raised and
        the iteration order is not changed.

        Examples
        --------

        >>> import pysal
        >>> w=pysal.lat2W(3,3)
        >>> for i,wi in enumerate(w):
        ...     print i,wi
        ...
        0 {1: 1.0, 3: 1.0}
        1 {0: 1.0, 2: 1.0, 4: 1.0}
        2 {1: 1.0, 5: 1.0}
        3 {0: 1.0, 4: 1.0, 6: 1.0}
        4 {1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0}
        5 {8: 1.0, 2: 1.0, 4: 1.0}
        6 {3: 1.0, 7: 1.0}
        7 {8: 1.0, 4: 1.0, 6: 1.0}
        8 {5: 1.0, 7: 1.0}

        >>> w.id_order
        [0, 1, 2, 3, 4, 5, 6, 7, 8]
        >>> w.id_order=range(8,-1,-1)
        >>> w.id_order
        [8, 7, 6, 5, 4, 3, 2, 1, 0]
        >>> for i,w_i in enumerate(w):
        ...     print i,w_i
        ...
        0 {5: 1.0, 7: 1.0}
        1 {8: 1.0, 4: 1.0, 6: 1.0}
        2 {3: 1.0, 7: 1.0}
        3 {8: 1.0, 2: 1.0, 4: 1.0}
        4 {1: 1.0, 3: 1.0, 5: 1.0, 7: 1.0}
        5 {0: 1.0, 4: 1.0, 6: 1.0}
        6 {1: 1.0, 5: 1.0}
        7 {0: 1.0, 2: 1.0, 4: 1.0}
        8 {1: 1.0, 3: 1.0}
        >>>

        """
        if set(self._id_order) == set(ordered_ids):
            self._id_order = ordered_ids
            self._idx = 0
            self._id_order_set = True
            self._reset()
        else:
            raise Exception('ordered_ids do not align with W ids')

    def __get_id_order(self):
        """returns the ids for the observations in the order in which they
        would be encountered if iterating over the weights."""
        return self._id_order

    id_order = property(__get_id_order, __set_id_order)

    @property
    def id_order_set(self):
        """returns True if user has set id_order, False if not.

        Examples
        --------
        >>> from pysal import lat2W
        >>> w=lat2W()
        >>> w.id_order_set
        True
        """
        return self._id_order_set

    @property
    def neighbor_offsets(self):
        """
        Given the current id_order, neighbor_offsets[id] is the offsets of the
        id's neighbors in id_order

        Examples
        --------
        >>> from pysal import W
        >>> neighbors={'c': ['b'], 'b': ['c', 'a'], 'a': ['b']}
        >>> weights ={'c': [1.0], 'b': [1.0, 1.0], 'a': [1.0]}
        >>> w=W(neighbors,weights)
        >>> w.id_order = ['a','b','c']
        >>> w.neighbor_offsets['b']
        [2, 0]
        >>> w.id_order = ['b','a','c']
        >>> w.neighbor_offsets['b']
        [2, 1]
        """
        if "neighbors_0" not in self._cache:
            self.__neighbors_0 = {}
            id2i = self.id2i
            for id, neigh_list in self.neighbors.iteritems():
                self.__neighbors_0[id] = [id2i[neigh] for neigh in neigh_list]
            self._cache['neighbors_0'] = self.__neighbors_0
        return self.__neighbors_0

    def get_transform(self):
        """
        Getter for transform property

        Returns
        -------
        transformation : string (or none)

        Examples
        --------
        >>> from pysal import lat2W
        >>> w=lat2W()
        >>> w.weights[0]
        [1.0, 1.0]
        >>> w.transform
        'O'
        >>> w.transform='r'
        >>> w.weights[0]
        [0.5, 0.5]
        >>> w.transform='b'
        >>> w.weights[0]
        [1.0, 1.0]
        >>>
        """
        return self._transform

    def set_transform(self, value="B"):
        """
        Transformations of weights.

        Notes
        -----

        Transformations are applied only to the value of the weights at
        instantiation. Chaining of transformations cannot be done on a W
        instance.

        Parameters
        ----------
        transform : string (not case sensitive)
                    B: Binary
                    R: Row-standardization (global sum=n)
                    D: Double-standardization (global sum=1)
                    V: Variance stabilizing
                    O: Restore original transformation (from instantiation)

        Examples
        --------
        >>> from pysal import lat2W
        >>> w=lat2W()
        >>> w.weights[0]
        [1.0, 1.0]
        >>> w.transform
        'O'
        >>> w.transform='r'
        >>> w.weights[0]
        [0.5, 0.5]
        >>> w.transform='b'
        >>> w.weights[0]
        [1.0, 1.0]
        >>>
        """
        value = value.upper()
        self._transform = value
        if value in self.transformations:
            self.weights = self.transformations[value]
            self._reset()
        else:
            if value == "R":
                # row standardized weights
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    row_sum = sum(wijs) * 1.0
                    weights[i] = [wij / row_sum for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "D":
                # doubly-standardized weights
                # update current chars before doing global sum
                self._reset()
                s0 = self.s0
                ws = 1.0 / s0
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    weights[i] = [wij * ws for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "B":
                # binary transformation
                weights = {}
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    weights[i] = [1.0 for wij in wijs]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "V":
                # variance stabilizing
                weights = {}
                q = {}
                k = self.cardinalities
                s = {}
                Q = 0.0
                self.weights = self.transformations['O']
                for i in self.weights:
                    wijs = self.weights[i]
                    q[i] = math.sqrt(sum([wij * wij for wij in wijs]))
                    s[i] = [wij / q[i] for wij in wijs]
                    Q += sum([si for si in s[i]])
                nQ = self.n / Q
                for i in self.weights:
                    weights[i] = [w * nQ for w in s[i]]
                weights = ROD(weights)
                self.transformations[value] = weights
                self.weights = weights
                self._reset()
            elif value == "O":
                # put weights back to original transformation
                weights = {}
                original = self.transformations[value]
                self.weights = original
                self._reset()
            else:
                print 'unsupported weights transformation'

    transform = property(get_transform, set_transform)

    def asymmetry(self, intrinsic=True):
        """
        Asymmetry check

        Arguments
        ---------
        intrinsic: boolean (default=True)
                
                intrinsic symmetry:
                      :math:`w_{i,j} == w_{j,i}`

                if intrisic is False:
                    symmetry is defined as :math:`i \in N_j \ AND \ j \in N_i` where
                    :math:`N_j` is the set of neighbors for j.
            
        Returns
        -------
        asymmetries : list
                      empty if no asymmetries are found
                      if asymmetries, first list is row indices, second
                      list is column indices of asymmetric cells

        Examples
        --------

        >>> from pysal import lat2W
        >>> w=lat2W(3,3)
        >>> w.asymmetry()
        []
        >>> w.transform='r'
        >>> result = w.asymmetry()[0:2]
        >>> print result[0]
        [1 3 0 2 4 1 5 0 4 6 1 3 5 7 2 4 8 3 7 4 6 8 5 7]
        >>> print result[1]
        [0 0 1 1 1 2 2 3 3 3 4 4 4 4 5 5 5 6 6 7 7 7 8 8]
        >>> result = w.asymmetry(intrinsic=False)
        >>> result
        []
        >>> neighbors={0:[1,2,3], 1:[1,2,3], 2:[0,1], 3:[0,1]}
        >>> weights={0:[1,1,1], 1:[1,1,1], 2:[1,1], 3:[1,1]}
        >>> w=W(neighbors,weights)
        >>> result = w.asymmetry()
        >>> print result[0]
        [1 0]
        >>> print result[1]
        [0 1]
        """

        if intrinsic:
            wd = self.sparse.transpose() - self.sparse
        else:
            transform = self.transform
            self.transform = 'b'
            wd = self.sparse.transpose() - self.sparse
            self.transform = transform

        ids = np.nonzero(wd)
        if len(ids[0]) == 0:
            return []
        else:
            return ids

    def full(self):
        """
        Generate a full numpy array

        Returns
        -------

        implicit : tuple
                   first element being the full numpy array and second element
                   keys being the ids associated with each row in the array.



        Examples
        --------
        >>> from pysal import W
        >>> neighbors={'first':['second'],'second':['first','third'],'third':['second']}
        >>> weights={'first':[1],'second':[1,1],'third':[1]}
        >>> w=W(neighbors,weights)
        >>> wf,ids=w.full()
        >>> wf
        array([[ 0.,  1.,  0.],
               [ 1.,  0.,  1.],
               [ 0.,  1.,  0.]])
        >>> ids
        ['first', 'second', 'third']

        See also
        --------
        full
        """
        return util.full(self)