Beispiel #1
0
def _moran_loc_scatterplot(moran_loc,
                           zstandard=True,
                           p=None,
                           ax=None,
                           scatter_kwds=None,
                           fitline_kwds=None):
    """
    Moran Scatterplot with option of coloring of Local Moran Statistics

    Parameters
    ----------
    moran_loc : esda.moran.Moran_Local instance
        Values of Moran's I Local Autocorrelation Statistics
    p : float, optional
        If given, the p-value threshold for significance. Points will
        be colored by significance. By default it will not be colored.
        Default =None.
    ax : Matplotlib Axes instance, optional
        If given, the Moran plot will be created inside this axis.
        Default =None.
    scatter_kwds : keyword arguments, optional
        Keywords used for creating and designing the scatter points.
        Default =None.
    fitline_kwds : keyword arguments, optional
        Keywords used for creating and designing the moran fitline.
        Default =None.

    Returns
    -------
    fig : Matplotlib Figure instance
        Moran Local scatterplot figure
    ax : matplotlib Axes instance
        Axes in which the figure is plotted

    Examples
    --------
    Imports
    
    >>> import matplotlib.pyplot as plt
    >>> import geopandas as gpd
    >>> from pysal.lib.weights.contiguity import Queen
    >>> from pysal.lib import examples
    >>> from pysal.explore.esda.moran import Moran_Local
    >>> from pysal.viz.splot.esda import moran_scatterplot
    
    Load data and calculate Moran Local statistics
    
    >>> link = examples.get_path('Guerry.shp')
    >>> gdf = gpd.read_file(link)
    >>> y = gdf['Donatns'].values
    >>> w = Queen.from_dataframe(gdf)
    >>> w.transform = 'r'
    >>> m = Moran_Local(y, w)
    
    plot
    
    >>> moran_scatterplot(m)
    >>> plt.show()
    
    customize plot
    
    >>> moran_scatterplot(m, p=0.05,
    ...                   fitline_kwds=dict(color='#4393c3'))
    >>> plt.show()
    
    """
    # to set default as an empty dictionary that is later filled with defaults
    if scatter_kwds is None:
        scatter_kwds = dict()
    if fitline_kwds is None:
        fitline_kwds = dict()

    if p is not None:
        if not isinstance(moran_loc, Moran_Local):
            raise ValueError("`moran_loc` is not a\n " +
                             "esda.moran.Moran_Local instance")
        if 'color' in scatter_kwds or 'c' in scatter_kwds or 'cmap' in scatter_kwds:
            warnings.warn(
                'To change the color use cmap with a colormap of 5,\n' +
                ' color defines the LISA category')

        # colors
        spots = moran_hot_cold_spots(moran_loc, p)
        hmap = colors.ListedColormap(
            ['#bababa', '#d7191c', '#abd9e9', '#2c7bb6', '#fdae61'])

    # define customization
    scatter_kwds.setdefault('alpha', 0.6)
    scatter_kwds.setdefault('s', 40)
    fitline_kwds.setdefault('alpha', 0.9)

    # get fig and ax
    fig, ax = _create_moran_fig_ax(ax, figsize=(7, 7))

    # set labels
    ax.set_xlabel('Attribute')
    ax.set_ylabel('Spatial Lag')
    ax.set_title('Moran Local Scatterplot')

    # plot and set standards
    if zstandard is True:
        lag = lag_spatial(moran_loc.w, moran_loc.z)
        fit = OLS(moran_loc.z[:, None], lag[:, None])
        # v- and hlines
        ax.axvline(0, alpha=0.5, color='k', linestyle='--')
        ax.axhline(0, alpha=0.5, color='k', linestyle='--')
        if p is not None:
            fitline_kwds.setdefault('color', 'k')
            scatter_kwds.setdefault('cmap', hmap)
            scatter_kwds.setdefault('c', spots)
            ax.plot(lag, fit.predy, **fitline_kwds)
            ax.scatter(moran_loc.z, fit.predy, **scatter_kwds)
        else:
            scatter_kwds.setdefault('color', splot_colors['moran_base'])
            fitline_kwds.setdefault('color', splot_colors['moran_fit'])
            ax.plot(lag, fit.predy, **fitline_kwds)
            ax.scatter(moran_loc.z, fit.predy, **scatter_kwds)
    else:
        lag = lag_spatial(moran_loc.w, moran_loc.y)
        b, a = np.polyfit(moran_loc.y, lag, 1)
        # dashed vert at mean of the attribute
        ax.vlines(moran_loc.y.mean(),
                  lag.min(),
                  lag.max(),
                  alpha=0.5,
                  linestyle='--')
        # dashed horizontal at mean of lagged attribute
        ax.hlines(lag.mean(),
                  moran_loc.y.min(),
                  moran_loc.y.max(),
                  alpha=0.5,
                  linestyle='--')
        if p is not None:
            fitline_kwds.setdefault('color', 'k')
            scatter_kwds.setdefault('cmap', hmap)
            scatter_kwds.setdefault('c', spots)
            ax.plot(moran_loc.y, a + b * moran_loc.y, **fitline_kwds)
            ax.scatter(moran_loc.y, lag, **scatter_kwds)
        else:
            scatter_kwds.setdefault('c', splot_colors['moran_base'])
            fitline_kwds.setdefault('color', splot_colors['moran_fit'])
            ax.plot(moran_loc.y, a + b * moran_loc.y, **fitline_kwds)
            ax.scatter(moran_loc.y, lag, **scatter_kwds)
    return fig, ax
Beispiel #2
0
def _moran_global_scatterplot(moran,
                              zstandard=True,
                              ax=None,
                              scatter_kwds=None,
                              fitline_kwds=None):
    """
    Global Moran's I Scatterplot.

    Parameters
    ----------
    moran : esda.moran.Moran instance
        Values of Moran's I Global Autocorrelation Statistics
    zstandard : bool, optional
        If True, Moran Scatterplot will show z-standardized attribute and
        spatial lag values. Default =True.
    ax : Matplotlib Axes instance, optional
        If given, the Moran plot will be created inside this axis.
        Default =None.
    scatter_kwds : keyword arguments, optional
        Keywords used for creating and designing the scatter points.
        Default =None.
    fitline_kwds : keyword arguments, optional
        Keywords used for creating and designing the moran fitline.
        Default =None.

    Returns
    -------
    fig : Matplotlib Figure instance
        Moran scatterplot figure
    ax : matplotlib Axes instance
        Axes in which the figure is plotted

    Examples
    --------
    Imports
    
    >>> import matplotlib.pyplot as plt
    >>> from pysal.lib.weights.contiguity import Queen
    >>> from pysal.lib import examples
    >>> import geopandas as gpd
    >>> from pysal.explore.esda.moran import Moran
    >>> from pysal.viz.splot.esda import moran_scatterplot
    
    Load data and calculate weights
    
    >>> link_to_data = examples.get_path('Guerry.shp')
    >>> gdf = gpd.read_file(link_to_data)
    >>> y = gdf['Donatns'].values
    >>> w = Queen.from_dataframe(gdf)
    >>> w.transform = 'r'
    
    Calculate Global Moran
    
    >>> moran = Moran(y, w)
    
    plot
    
    >>> moran_scatterplot(moran)
    >>> plt.show()
    
    customize plot
    
    >>> fig, ax = moran_scatterplot(moran, zstandard=False,
    ...                             fitline_kwds=dict(color='#4393c3'))
    >>> ax.set_xlabel('Donations')
    >>> plt.show()
    
    """
    # to set default as an empty dictionary that is later filled with defaults
    if scatter_kwds is None:
        scatter_kwds = dict()
    if fitline_kwds is None:
        fitline_kwds = dict()

    # define customization defaults
    scatter_kwds.setdefault('alpha', 0.6)
    scatter_kwds.setdefault('color', splot_colors['moran_base'])
    scatter_kwds.setdefault('s', 40)

    fitline_kwds.setdefault('alpha', 0.9)
    fitline_kwds.setdefault('color', splot_colors['moran_fit'])

    # get fig and ax
    fig, ax = _create_moran_fig_ax(ax, figsize=(7, 7))

    # set labels
    ax.set_xlabel('Attribute')
    ax.set_ylabel('Spatial Lag')
    ax.set_title('Moran Scatterplot' + ' (' + str(round(moran.I, 2)) + ')')

    # plot and set standards
    if zstandard is True:
        lag = lag_spatial(moran.w, moran.z)
        fit = OLS(moran.z[:, None], lag[:, None])
        # plot
        ax.scatter(moran.z, lag, **scatter_kwds)
        ax.plot(lag, fit.predy, **fitline_kwds)
        # v- and hlines
        ax.axvline(0, alpha=0.5, color='k', linestyle='--')
        ax.axhline(0, alpha=0.5, color='k', linestyle='--')
    else:
        lag = lag_spatial(moran.w, moran.y)
        b, a = np.polyfit(moran.y, lag, 1)
        # plot
        ax.scatter(moran.y, lag, **scatter_kwds)
        ax.plot(moran.y, a + b * moran.y, **fitline_kwds)
        # dashed vert at mean of the attribute
        ax.vlines(moran.y.mean(),
                  lag.min(),
                  lag.max(),
                  alpha=0.5,
                  linestyle='--')
        # dashed horizontal at mean of lagged attribute
        ax.hlines(lag.mean(),
                  moran.y.min(),
                  moran.y.max(),
                  alpha=0.5,
                  linestyle='--')
    return fig, ax
Beispiel #3
0
def _moran_bv_scatterplot(moran_bv,
                          ax=None,
                          scatter_kwds=None,
                          fitline_kwds=None):
    """
    Bivariate Moran Scatterplot.

    Parameters
    ----------
    moran_bv : esda.moran.Moran_BV instance
        Values of Bivariate Moran's I Autocorrelation Statistics
    ax : Matplotlib Axes instance, optional
        If given, the Moran plot will be created inside this axis.
        Default =None.
    scatter_kwds : keyword arguments, optional
        Keywords used for creating and designing the scatter points.
        Default =None.
    fitline_kwds : keyword arguments, optional
        Keywords used for creating and designing the moran fitline.
        Default =None.

    Returns
    -------
    fig : Matplotlib Figure instance
        Bivariate moran scatterplot figure
    ax : matplotlib Axes instance
        Axes in which the figure is plotted

    Examples
    --------
    Imports
    
    >>> import matplotlib.pyplot as plt
    >>> from pysal.lib.weights.contiguity import Queen
    >>> from pysal.lib import examples
    >>> import geopandas as gpd
    >>> from pysal.explore.esda.moran import Moran_BV
    >>> from pysal.viz.splot.esda import moran_scatterplot
    
    Load data and calculate weights
    
    >>> link_to_data = examples.get_path('Guerry.shp')
    >>> gdf = gpd.read_file(link_to_data)
    >>> x = gdf['Suicids'].values
    >>> y = gdf['Donatns'].values
    >>> w = Queen.from_dataframe(gdf)
    >>> w.transform = 'r'
    
    Calculate Bivariate Moran
    
    >>> moran_bv = Moran_BV(x, y, w)
    
    plot
    
    >>> moran_scatterplot(moran_bv)
    >>> plt.show()
    
    customize plot
    
    >>> moran_scatterplot(moran_bv,
    ...                      fitline_kwds=dict(color='#4393c3'))
    >>> plt.show()
    
    """
    # to set default as an empty dictionary that is later filled with defaults
    if scatter_kwds is None:
        scatter_kwds = dict()
    if fitline_kwds is None:
        fitline_kwds = dict()

    # define customization
    scatter_kwds.setdefault('alpha', 0.6)
    scatter_kwds.setdefault('color', splot_colors['moran_base'])
    scatter_kwds.setdefault('s', 40)

    fitline_kwds.setdefault('alpha', 0.9)
    fitline_kwds.setdefault('color', splot_colors['moran_fit'])

    # get fig and ax
    fig, ax = _create_moran_fig_ax(ax, figsize=(7, 7))

    # set labels
    ax.set_xlabel('Attribute X')
    ax.set_ylabel('Spatial Lag of Y')
    ax.set_title('Bivariate Moran Scatterplot' + ' (' +
                 str(round(moran_bv.I, 2)) + ')')

    # plot and set standards
    lag = lag_spatial(moran_bv.w, moran_bv.zy)
    fit = OLS(moran_bv.zy[:, None], lag[:, None])
    # plot
    ax.scatter(moran_bv.zx, lag, **scatter_kwds)
    ax.plot(lag, fit.predy, **fitline_kwds)
    # v- and hlines
    ax.axvline(0, alpha=0.5, color='k', linestyle='--')
    ax.axhline(0, alpha=0.5, color='k', linestyle='--')
    return fig, ax
Beispiel #4
0
import numpy as np
import pysal.lib
from pysal.model.spreg import OLS

db = pysal.lib.io.open(pysal.lib.examples.get_path('columbus.dbf'), 'r')

hoval = db.by_col("HOVAL")
y = np.array(hoval)
y.shape = (len(hoval), 1)

X = []
X.append(db.by_col("INC"))
X.append(db.by_col("CRIME"))
X = np.array(X).T

ols = OLS(y,
          X,
          name_y='home value',
          name_x=['income', 'crime'],
          name_ds='columbus',
          white_test=True)

print(ols.summary)