Beispiel #1
0
    def setUp(self):
        Monomer('A', ['a'])
        Monomer('B', ['b'])

        Parameter('ksynthA', 100)
        Parameter('ksynthB', 100)
        Parameter('kbindAB', 100)

        Parameter('A_init', 0)
        Parameter('B_init', 0)

        Initial(A(a=None), A_init)
        Initial(B(b=None), B_init)

        Observable("A_free", A(a=None))
        Observable("B_free", B(b=None))
        Observable("AB_complex", A(a=1) % B(b=1))

        Rule('A_synth', None >> A(a=None), ksynthA)
        Rule('B_synth', None >> B(b=None), ksynthB)
        Rule('AB_bind', A(a=None) + B(b=None) >> A(a=1) % B(b=1), kbindAB)

        self.model = model
        generate_equations(self.model)

        # Convenience shortcut for accessing model monomer objects
        self.mon = lambda m: self.model.monomers[m]

        # This timespan is chosen to be enough to trigger a Jacobian evaluation
        # on the various solvers.
        self.time = np.linspace(0, 1)
        self.sim = BngSimulator(self.model, tspan=self.time)
Beispiel #2
0
def test_set_initials_by_params():
    # This tests setting initials by changing their underlying parameter values
    # BNG Simulator uses a dictionary for initials, unlike e.g.
    # ScipyOdeSimulator, so a separate test is needed

    model = robertson.model
    t = np.linspace(0, 40, 51)
    ic_params = model.parameters_initial_conditions()
    param_values = np.array([p.value for p in model.parameters])
    ic_mask = np.array([p in ic_params for p in model.parameters])

    bng_sim = BngSimulator(model, tspan=t, verbose=0)

    # set all initial conditions to 1
    param_values[ic_mask] = np.array([1, 1, 1])
    traj = bng_sim.run(param_values=param_values)

    # set properly here
    assert np.allclose(traj.initials, [1, 1, 1])

    # overwritten in bng file. lines 196-202.
    # Values from initials_dict are used, but it should take them from
    # self.initials, so I don't see how they are getting overwritten?
    print(traj.dataframe.loc[0])
    assert np.allclose(traj.dataframe.loc[0][0:3], [1, 1, 1])

    # Same here
    param_values[ic_mask] = np.array([0, 1, 1])
    traj = bng_sim.run(param_values=param_values)
    assert np.allclose(traj.initials, [0, 1, 1])
    assert np.allclose(traj.dataframe.loc[0][0:3], [0, 1, 1])
Beispiel #3
0
    def test_nfsim_different_initials_lengths(self):
        A = self.model.monomers['A']
        B = self.model.monomers['B']

        sim = BngSimulator(self.model, tspan=np.linspace(0, 1),
                           initials={B(): [150, 250, 350]})
        sim.run(initials={A(): [275, 375]})
Beispiel #4
0
    def test_nfsim_different_initials_lengths(self):
        A = self.model.monomers['A']
        B = self.model.monomers['B']

        sim = BngSimulator(self.model, tspan=np.linspace(0, 1),
                           initials={B(): [150, 250, 350]})
        sim.run(initials={A(): [275, 375]})
Beispiel #5
0
class TestBngSimulator(object):
    @with_model
    def setUp(self):
        Monomer('A', ['a'])
        Monomer('B', ['b'])

        Parameter('ksynthA', 100)
        Parameter('ksynthB', 100)
        Parameter('kbindAB', 100)

        Parameter('A_init', 0)
        Parameter('B_init', 0)

        Initial(A(a=None), A_init)
        Initial(B(b=None), B_init)

        Observable("A_free", A(a=None))
        Observable("B_free", B(b=None))
        Observable("AB_complex", A(a=1) % B(b=1))

        Rule('A_synth', None >> A(a=None), ksynthA)
        Rule('B_synth', None >> B(b=None), ksynthB)
        Rule('AB_bind', A(a=None) + B(b=None) >> A(a=1) % B(b=1), kbindAB)

        self.model = model
        generate_equations(self.model)

        # Convenience shortcut for accessing model monomer objects
        self.mon = lambda m: self.model.monomers[m]

        # This timespan is chosen to be enough to trigger a Jacobian evaluation
        # on the various solvers.
        self.time = np.linspace(0, 1)
        self.sim = BngSimulator(self.model, tspan=self.time)

    def test_1_simulation(self):
        x = self.sim.run()
        assert np.allclose(x.tout, self.time)

    def test_multi_simulations(self):
        x = self.sim.run(n_runs=10)
        assert np.shape(x.observables) == (10, 50)
        # Check initials are getting correctly reset on each simulation
        assert np.allclose(x.species[-1][0, :], x.species[0][0, :])

    def test_change_parameters(self):
        x = self.sim.run(n_runs=10,
                         param_values={'ksynthA': 200},
                         initials={self.model.species[0]: 100})
        species = np.array(x.all)
        assert species[0][0][0] == 100.

    def test_bng_pla(self):
        self.sim.run(n_runs=5, method='pla', seed=_BNG_SEED)

    def tearDown(self):
        self.model = None
        self.time = None
        self.sim = None
Beispiel #6
0
def test_bng_ode_with_expressions():
    model = expression_observables.model
    model.reset_equations()

    sim = BngSimulator(model, tspan=np.linspace(0, 1))
    x = sim.run(n_runs=1, method='ode')
    assert len(x.expressions) == 50
    assert len(x.observables) == 50
Beispiel #7
0
def test_bng_ode_with_expressions():
    model = expression_observables.model
    model.reset_equations()

    sim = BngSimulator(model, tspan=np.linspace(0, 1))
    x = sim.run(n_runs=1, method='ode')
    assert len(x.expressions) == 50
    assert len(x.observables) == 50
def seg_model(num_cells, k_death, k_division, n_sims):

    dip_dist = []
    dip_dist1 = []

    Model()

    Monomer("Cell")
    Parameter('CellInit', num_cells)
    Initial(Cell(), CellInit)
    Observable("Obs_Cell", Cell())
    Parameter("k_div", k_division)
    Parameter("k_dth", k_death)
    Rule("Cell_Div", Cell() >> Cell() + Cell(), k_div)
    Rule("Cell_Death", Cell() >> None, k_dth)

    t1 = np.linspace(0, 168, 169)  # 7 days
    sim = BngSimulator(model, tspan=t1, verbose=False)  # , seed = 1095205711)
    x1 = sim.run(n_runs=n_sims, verbose=False)  # returns np.array with species and obs

    plt.figure()
    for sim in range(n_sims):
        plt.plot(x1.tout[sim], (np.log2(x1.all[sim]["Obs_Cell"]/x1.all[sim]["Obs_Cell"][0])), '0.5', lw=2,
                 label = "Simulated Data" if sim == 0 else "")
        plt.plot(x1.tout[sim][80:], (np.log2(x1.all[sim]["Obs_Cell"][80:] / x1.all[sim]["Obs_Cell"][0])), 'r', lw=2,
                 label="Simulated Data" if sim == 0 else "")
        print(x1.tout[1][80:])

        slope, intercept, r_value, p_value, std_err = sp.stats.linregress(x1.tout[sim][80:], np.log2(
            x1.all[sim]["Obs_Cell"][80:]/x1.all[sim]["Obs_Cell"][0]))
        if math.isnan(slope) == False:
            dip_dist = dip_dist + [slope]
        plt.plot(x1.tout[sim], intercept + slope * x1.tout[sim], 'k', label = "Fitted Lines" if sim == 0 else "", lw = 2)

        slope, intercept, r_value, p_value, std_err = sp.stats.linregress(x1.tout[sim], np.log2(
            x1.all[sim]["Obs_Cell"] / x1.all[sim]["Obs_Cell"][0]))
        if math.isnan(slope) == False:
            dip_dist1 = dip_dist1 + [slope]
        plt.plot(x1.tout[sim], intercept + slope * x1.tout[sim], 'k', label="Fitted Lines" if sim == 0 else "", lw=2)

    plt.legend(loc = "upper left")
    plt.xlabel("Time (hours)", weight = "bold")
    plt.ylabel("log2(cell count)", weight = "bold")
    plt.title("Model Trajectories", weight = "bold")

    plt.figure()
    sns.distplot(dip_dist, hist = False, color = "k", kde_kws={"shade": True})
    sns.distplot(dip_dist1, hist = False, color = "r", kde_kws={"shade": True})
    plt.axvline(x=(k_division-k_death)/np.log(2), color = 'k', ls = '--', lw = 3)
    plt.xlabel("DIP Rate", weight = "bold")
    plt.ylabel("Density", weight = "bold")
    plt.title("DIP Rate Distribution - 100 cells", weight = "bold")
def test_nfsim():
    model = robertson.model
    # Reset equations from any previous network generation
    model.reset_equations()

    sim = BngSimulator(model, tspan=np.linspace(0, 1))
    x = sim.run(n_runs=1, method='nf', seed=_BNG_SEED)
    observables = np.array(x.observables)
    assert len(observables) == 50

    A = model.monomers['A']
    x = sim.run(n_runs=2, method='nf', tspan=np.linspace(0, 1),
                initials={A(): 100}, seed=_BNG_SEED)
    assert np.allclose(x.dataframe.loc[0, 0.0], [100.0, 0.0, 0.0])
Beispiel #10
0
    def test_nfsim_different_initials_params_lengths(self):
        A = self.model.monomers['A']

        sim = BngSimulator(self.model,
                           tspan=np.linspace(0, 1),
                           initials={A(): [150, 250, 350]},
                           param_values=self.param_values_2sets)
Beispiel #11
0
def test_stop_if():
    Model()
    Monomer('A')
    Rule('A_synth', None >> A(), Parameter('k', 1))
    Observable('Atot', A())
    Expression('exp_const', k + 1)
    Expression('exp_dyn', Atot + 1)
    sim = BngSimulator(model, verbose=5)
    tspan = np.linspace(0, 100, 101)
    x = sim.run(tspan, stop_if='Atot>9', seed=_BNG_SEED)
    # All except the last Atot value should be <=9
    assert all(x.observables['Atot'][:-1] <= 9)
    assert x.observables['Atot'][-1] > 9
    # Starting with Atot > 9 should terminate simulation immediately
    y = sim.run(tspan, initials=x.species[-1], stop_if='Atot>9')
    assert len(y.observables) == 1
Beispiel #12
0
    def setUp(self):
        Monomer('A', ['a'])
        Monomer('B', ['b'])

        Parameter('ksynthA', 100)
        Parameter('ksynthB', 100)
        Parameter('kbindAB', 100)

        Parameter('A_init', 0)
        Parameter('B_init', 0)

        Initial(A(a=None), A_init)
        Initial(B(b=None), B_init)

        Observable("A_free", A(a=None))
        Observable("B_free", B(b=None))
        Observable("AB_complex", A(a=1) % B(b=1))

        Rule('A_synth', None >> A(a=None), ksynthA)
        Rule('B_synth', None >> B(b=None), ksynthB)
        Rule('AB_bind', A(a=None) + B(b=None) >> A(a=1) % B(b=1), kbindAB)

        self.model = model
        generate_equations(self.model)

        # Convenience shortcut for accessing model monomer objects
        self.mon = lambda m: self.model.monomers[m]

        # This timespan is chosen to be enough to trigger a Jacobian evaluation
        # on the various solvers.
        self.time = np.linspace(0, 1)
        self.sim = BngSimulator(self.model, tspan=self.time)
Beispiel #13
0
def test_stop_if():
    Model()
    Monomer('A')
    Rule('A_synth', None >> A(), Parameter('k', 1))
    Observable('Atot', A())
    Expression('exp_const', k + 1)
    Expression('exp_dyn', Atot + 1)
    sim = BngSimulator(model, verbose=5)
    tspan = np.linspace(0, 100, 101)
    x = sim.run(tspan, stop_if='Atot>9', seed=_BNG_SEED)
    # All except the last Atot value should be <=9
    assert all(x.observables['Atot'][:-1] <= 9)
    assert x.observables['Atot'][-1] > 9
    # Starting with Atot > 9 should terminate simulation immediately
    y = sim.run(tspan, initials=x.species[-1], stop_if='Atot>9')
    assert len(y.observables) == 1
Beispiel #14
0
def test_hpp():
    model = robertson.model
    # Reset equations from any previous network generation
    model.reset_equations()

    A = robertson.model.monomers['A']
    klump = Parameter('klump', 10000, _export=False)
    model.add_component(klump)

    population_maps = [PopulationMap(A(), klump)]

    sim = BngSimulator(model, tspan=np.linspace(0, 1))
    x = sim.run(n_runs=1,
                method='nf',
                population_maps=population_maps,
                seed=_BNG_SEED)
    observables = np.array(x.observables)
    assert len(observables) == 50
Beispiel #15
0
def test_hpp():
    model = robertson.model
    # Reset equations from any previous network generation
    model.reset_equations()

    A = robertson.model.monomers['A']
    klump = Parameter('klump', 10000, _export=False)
    model.add_component(klump)

    population_maps = [
        PopulationMap(A(), klump)
    ]

    sim = BngSimulator(model, tspan=np.linspace(0, 1))
    x = sim.run(n_runs=1, method='nf', population_maps=population_maps,
                seed=_BNG_SEED)
    observables = np.array(x.observables)
    assert len(observables) == 50
def run_LSDspikeIn_model(n_wells, n_cell_types, percent, n_cells):

    low_dips = -0.04
    high_dips = 0.02
    dips = np.linspace(low_dips, high_dips, n_cell_types)
    dip_mean = -0.01
    dip_var = 0.01
    # print("DIP RATES")
    # print(dips)
    # print("Death rates")
    # print(-dips+(0.03*np.log(2)))


    # Discretize normal distribution of dip rates - used in post drug simulation
    normal = sp.norm.pdf(dips, dip_mean, dip_var)
    sum = 0
    for i in range(1, n_cell_types):
        sum += normal[i] * (dips[i] - dips[i - 1])
    normal_hist = normal * (dips[1] - dips[0])

    Model()
    [Monomer("Cell", ['dip'], {'dip': ["%d" %i for i in range(n_cell_types)]})]
    Monomer("Cell_resistant")
    # print(model.monomers)

    Parameter('cellInit_0', 0) # list(choice).count(1))
    [Parameter('cellInit_%d' %i)for i in range(1,n_cell_types)]
    Parameter('Cell_resistant_0', 0) # list(choice).count(0))
    # print(model.parameters)

    Initial(Cell(dip = "0"), cellInit_0) # could not be a string - parameter only - didn't know how to set up
    [Initial(Cell(dip = "%d" %i), model.parameters["cellInit_%d" %i]) for i in range(1,n_cell_types)]
    Initial(Cell_resistant, Cell_resistant_0)
    # print(model.initial_conditions)

    [Observable("Obs_Cell%d" %i, Cell(dip = "%d" %i)) for i in range(n_cell_types)]
    Observable("Obs_All", Cell())
    Observable("Obs_Cell_resistant", Cell_resistant())
    # print(model.observables)

    # print(dips)
    k_div = 0.04 * np.log(2)
    [Parameter("k_div_%d" % i, k_div) for i in range(len(dips))]
    k_death = k_div - (dips*np.log(2))
    [Parameter("k_death_%d" % i, k) for i,k in enumerate(k_death)]
    Parameter('k_div_resistant', 0.04 * np.log(2))
    Parameter('k_death_resistant', 0.005 * np.log(2))

    # print(model.parameters)

    [Rule("Cell%d_Div" %i, Cell(dip = "%d" %i) >> Cell(dip = "%d" %i) + Cell(dip = "%d" %i),
          model.parameters["k_div_%d" %i]) for i in range(len(dips))]
    [Rule("Cell%d_Death" %i, Cell(dip = "%d" %i) >> None,
          model.parameters["k_death_%d" %i]) for i in range(len(k_death))]
    Rule('Cell_resistant_Div', Cell_resistant() >> Cell_resistant() + Cell_resistant(), k_div_resistant)
    Rule('Cell_resistant_Death', Cell_resistant() >> None, k_death_resistant)

    # print(model.rules)
    # quit()

    distr_normal = []
    distr_resistant = []
    count = 0

    # preDrug_cellNormal = []
    # preDrug_cellResistant = []
    for exp in range(n_wells):

        #cFP
        # num_cells = 1
        #LSD
        num_cells = np.random.poisson(n_cells)
        # the 2 provides two choices (0 and 1), which correspond to two populations
        choice = np.random.choice(2, num_cells, p=[percent, 1-percent])
        # print(choice)

        if num_cells != 0:

            normal_init = list(choice).count(1)
            resistant_init = list(choice).count(0)

            cellInit_0.value = normal_init
            Cell_resistant_0.value = resistant_init

            # print(cellInit_0)
            # print(Cell_resistant_0)
            t1 = np.linspace(0,168,169) # 7 days
            sim = BngSimulator(model, tspan=t1, verbose=False)#, seed = 1095205711)
            # Why do the n_cells = 0 start off with 1?
            x1 = sim.run(n_runs = 1, param_values={"k_death_0": 0.005 * np.log(2)},
                         verbose = False) # returns np.array with species and obs
            # all_cells = np.array(x1.observables)
            # cell_tot = all_cells["Obs_All"].T[-1]
            # print(np.array(x1.all).shape)
            # quit()
            # print(x1.all)
            # print(type(x1.all))

            # The total well subpopulation count before drug addition
            cell_tot = x1.observables["Obs_Cell0"][-1]
            cell_tot_resistant = x1.observables["Obs_Cell_resistant"][-1]

            # preDrug_cellNormal.append(cell_tot)
            # preDrug_cellResistant.append(cell_tot_resistant)
            # For when n_wells > 1
            # cell_tot = [x[-1]["Obs_Cell0"] for x in x1.all]
            # cell_tot_resistant = [x[-1]["Obs_Cell_resistant"] for x in x1.all]
            # print(cell_tot)
            # print(cell_tot_resistant)

            # print("Sim 1 Finished.")

            cell_pop = np.random.multinomial(int(round(cell_tot)), normal_hist)  # *100 for true normal
            # print(cell_pop)
            t2 = np.linspace(0, 144, 145)  # 6 days in drug


            x2 = sim.run(tspan=t2, param_values={"k_death_0": model.parameters['k_death_0'].value,
                                                 "Cell_resistant_0": cell_tot_resistant},
                         n_sim=1, initials={model.species[i]: pop for i, pop in enumerate(cell_pop)},
                         verbose=False)
            # print(cell_tot_resistant)

            if np.sum(cell_pop) != 0:
                slope, intercept, r_value, p_value, std_err = sp.stats.linregress(t2, np.log2(
                    x2.observables["Obs_All"] / x2.observables["Obs_All"][0]))
                if math.isnan(slope) == False:
                    distr_normal = distr_normal + [slope]
                # print "Normal", slope

            if cell_tot_resistant != 0:
                slope, intercept, r_value, p_value, std_err = sp.stats.linregress(t2, np.log2(
                    x2.observables["Obs_Cell_resistant"] / x2.observables["Obs_Cell_resistant"][0]))
                if math.isnan(slope) == False:
                    distr_resistant = distr_resistant + [slope]
                # print "Resistant", slope

            # plt.figure()
            # plt.plot(t1, np.log2(x1.observables["Obs_Cell0"]), 'g', lw=2)
            # plt.plot(t1, np.log2(x1.observables["Obs_Cell_resistant"]), 'r', lw=2)
            # plt.plot(t1[-1] + x2.tout[0], np.log2(x2.observables["Obs_All"]), 'g', lw = 2)
            # plt.plot(t1[-1] + x2.tout[0], np.log2(x2.observables["Obs_Cell_resistant"]), 'r', lw = 2)
            # plt.axvline(x=168, linewidth=4, color='k')
            # plt.xlabel("Time (hours)", weight = "bold")
            # plt.ylabel("log2(cell count)", weight = "bold")
            # plt.title("LSD %d Resistant Spike-In: Well %d" % (percent*100, exp), weight = "bold")
        count = count + 1
        print("Well")
        print(count)
        print(distr_normal)
        print(distr_resistant)

    plt.figure()
    bins = np.linspace(-0.04, 0.06, 101)
    # bins = np.histogram(np.hstack((distr_resistant, distr_normal)), bins=100)[1]
    if len(distr_normal) >= 2:
        sns.distplot(distr_normal, bins, kde=False, color="g", kde_kws={"shade": True}, label = "Parental")
    # elif len(distr_normal) == 1:
    #     rs = np.random.RandomState(0)
    #     num_elements = len(distr_normal)
    #     x = rs.normal(10, 1, num_elements)
    #     sns.distplot(np.r_[x,x], bins, kde=False, color="g", kde_kws={"shade": True}, label="Parental")
    if len(distr_resistant) >= 2:
        sns.distplot(distr_resistant, bins, kde=False, color="r", kde_kws={"shade": True}, label = "Resistant")
    else:
        pass

    # elif len(distr_resistant) == 1:
    #     rs1 = np.random.RandomState(0)
    #     num_elements1 = len(distr_resistant)
    #     x1 = rs1.normal(10, 1, num_elements1)
    #     sns.distplot(np.r_[x1,x1], bins, kde=False, color="r", kde_kws={"shade": True},label="Resistant")
    plt.axvline(x=(k_div-((k_death_4.value+k_death_5.value)/2))/np.log(2), color = 'g', ls = '--', lw = 3,
                label = "Parental DIP Mean")
    plt.axvline(x=(k_div_resistant.value-k_death_resistant.value)/np.log(2), color = 'r', ls = '--', lw = 3,
                label = "Resistant DIP Mean")
    plt.axvline(x=0, color = 'k', ls = '--', lw = 3)

    # bins = np.histogram(np.hstack((distr_resistant, distr_normal)), bins=100)[1]
    plt.xlabel("DIP Rate", weight="bold")
    plt.ylabel("Frequency", weight = "bold")
    plt.xlim(-0.04, 0.06)
    plt.ylim(0,400)
    # plt.ylim(0,100*(n_wells/384))
    plt.title("LSD DIP Distribution %.4f%% Resistant Spike-In (%d Cells, %d Wells) " % (percent*100, n_cells, n_wells),
              weight = "bold")
    plt.legend(loc="upper left")
    np.save("LSDspikein_normalDIPs_%.6fresistant_%dcells_%dwells.npy" % (percent, n_cells, n_wells), distr_normal)
    np.save("LSDspikein_resistantDIPs_%.6fresistant_%dcells_%dwells.npy" % (percent, n_cells, n_wells), distr_resistant)
    plt.savefig("LSDspikein_DIPdistr_%.6fresistant_%dcells_%dwells.pdf" % (percent, n_cells, n_wells))
Beispiel #17
0
class TestNfSim(object):
    def setUp(self):
        self.model = robertson.model
        self.model.reset_equations()
        self.sim = BngSimulator(self.model, tspan=np.linspace(0, 1))
        self.param_values_2sets = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]

    def test_nfsim_2runs(self):
        x = self.sim.run(n_runs=1, method='nf', seed=_BNG_SEED)
        observables = np.array(x.observables)
        assert len(observables) == 50

        A = self.model.monomers['A']
        x = self.sim.run(n_runs=2, method='nf', tspan=np.linspace(0, 1),
                    initials={A(): 100}, seed=_BNG_SEED)
        assert (x.nsims == 2)
        assert np.allclose(x.dataframe.loc[0, 0.0], [100.0, 0.0, 0.0])

    def test_nfsim_2initials(self):
        # Test with two initials
        A = self.model.monomers['A']
        x2 = self.sim.run(method='nf', tspan=np.linspace(0, 1),
                     initials={A(): [100, 200]}, seed=_BNG_SEED)
        assert x2.nsims == 2
        assert np.allclose(x2.dataframe.loc[0, 0.0], [100.0, 0.0, 0.0])
        assert np.allclose(x2.dataframe.loc[1, 0.0], [200.0, 0.0, 0.0])

    def test_nfsim_2params(self):
        # Test with two param_values
        x3 = self.sim.run(method='nf', tspan=np.linspace(0, 1),
                          param_values=self.param_values_2sets, seed=_BNG_SEED)
        assert x3.nsims == 2
        assert np.allclose(x3.param_values, self.param_values_2sets)

    def test_nfsim_2initials_2params(self):
        # Test with two initials and two param_values
        A = self.model.monomers['A']
        x = self.sim.run(method='nf',
                         tspan=np.linspace(0, 1),
                         initials={A(): [101, 201]},
                         param_values=[[1, 2, 3, 4, 5, 6],
                                       [7, 8, 9, 10, 11, 12]],
                         seed=_BNG_SEED)
        assert x.nsims == 2
        assert np.allclose(x.dataframe.loc[0, 0.0], [101.0, 0.0, 0.0])

    @raises(ValueError)
    def test_nfsim_different_initials_lengths(self):
        A = self.model.monomers['A']
        B = self.model.monomers['B']

        sim = BngSimulator(self.model, tspan=np.linspace(0, 1),
                           initials={B(): [150, 250, 350]})
        sim.run(initials={A(): [275, 375]})

    @raises(ValueError)
    def test_nfsim_different_initials_params_lengths(self):
        A = self.model.monomers['A']

        sim = BngSimulator(self.model, tspan=np.linspace(0, 1),
                           initials={A(): [150, 250, 350]},
                           param_values=self.param_values_2sets)
Beispiel #18
0
 def setUp(self):
     self.model = robertson.model
     self.model.reset_equations()
     self.sim = BngSimulator(self.model, tspan=np.linspace(0, 1))
     self.param_values_2sets = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
Beispiel #19
0
class TestBngSimulator(object):
    @with_model
    def setUp(self):
        Monomer('A', ['a'])
        Monomer('B', ['b'])

        Parameter('ksynthA', 100)
        Parameter('ksynthB', 100)
        Parameter('kbindAB', 100)

        Parameter('A_init', 0)
        Parameter('B_init', 0)

        Initial(A(a=None), A_init)
        Initial(B(b=None), B_init)

        Observable("A_free", A(a=None))
        Observable("B_free", B(b=None))
        Observable("AB_complex", A(a=1) % B(b=1))

        Rule('A_synth', None >> A(a=None), ksynthA)
        Rule('B_synth', None >> B(b=None), ksynthB)
        Rule('AB_bind', A(a=None) + B(b=None) >> A(a=1) % B(b=1), kbindAB)

        self.model = model
        generate_equations(self.model)

        # Convenience shortcut for accessing model monomer objects
        self.mon = lambda m: self.model.monomers[m]

        # This timespan is chosen to be enough to trigger a Jacobian evaluation
        # on the various solvers.
        self.time = np.linspace(0, 1)
        self.sim = BngSimulator(self.model, tspan=self.time)

    def test_1_simulation(self):
        x = self.sim.run()
        assert np.allclose(x.tout, self.time)

    def test_multi_simulations(self):
        x = self.sim.run(n_runs=10)
        assert np.shape(x.observables) == (10, 50)
        # Check initials are getting correctly reset on each simulation
        assert np.allclose(x.species[-1][0, :], x.species[0][0, :])

    def test_change_parameters(self):
        x = self.sim.run(n_runs=10, param_values={'ksynthA': 200},
                         initials={self.model.species[0]: 100})
        species = np.array(x.all)
        assert species[0][0][0] == 100.

    def test_bng_pla(self):
        self.sim.run(n_runs=5, method='pla', seed=_BNG_SEED)

    def test_tout_matches_tspan(self):
        # Linearly spaced, starting from 0
        assert all(self.sim.run(tspan=[0, 10, 20]).tout[0] == [0, 10, 20])
        # Non-linearly spaced, starting from 0
        assert all(self.sim.run(tspan=[0, 10, 30]).tout[0] == [0, 10, 30])
        # Linearly spaced, starting higher than 0
        assert all(self.sim.run(tspan=[10, 20, 30]).tout[0] == [10, 20, 30])
        # Linearly spaced, starting higher than 0
        assert all(self.sim.run(tspan=[5, 20, 30]).tout[0] == [5, 20, 30])

    def tearDown(self):
        self.model = None
        self.time = None
        self.sim = None
def run_barcoding_model(n_exp, n_barcodes, n_cell_types, percent):

    all_post_drug_counts = []

    ### SKMEL5 SC01 DIP Rate Distribution
    low_dips = -0.062
    high_dips = -0.002
    dips = np.linspace(low_dips, high_dips, n_cell_types)
    dip_mean = -0.033
    dip_var = 0.01

    # Discretize normal distribution of dip rates - used in post drug simulation
    normal = sp.norm.pdf(dips, dip_mean, dip_var)
    print(normal)
    sum = 0
    for i in range(1, n_cell_types):
        sum += normal[i] * (dips[i] - dips[i - 1])
    print(sum)

    normal_hist = normal * (dips[1] - dips[0])
    print(normal_hist)
    print(dips)


    Model()
    [Monomer("Cell", ['dip'], {'dip': ["%d" %i for i in range(n_cell_types)]})]
    Monomer("Cell_resistant")
    print(model.monomers)

    # Monomer("Cell", ['dip'], {"dip": ["0","1"]})


    Parameter('cellInit_0', 1)
    [Parameter('cellInit_%d' %i)for i in range(1,n_cell_types)]
    # Resistant initial parameter will be overwritten later
    Parameter('Cell_resistant_0', 0)  # list(choice).count(0))
    # Parameter('Cell_1init')
    print(model.parameters)

    Initial(Cell(dip = "0"), cellInit_0) # could not be a string - parameter only - didn't know how to set up
    [Initial(Cell(dip = "%d" %i), model.parameters["cellInit_%d" %i]) for i in range(1,n_cell_types)]
    Initial(Cell_resistant, Cell_resistant_0)
    # for ic in model.initial_conditions:
    #     print ic
    print(model.initial_conditions)

    [Observable("Obs_Cell%d" %i, Cell(dip = "%d" %i)) for i in range(n_cell_types)]
    Observable("Obs_All", Cell())
    Observable("Obs_Cell_resistant", Cell_resistant())
    print(model.observables)

    print(dips)
    k_div = 0.04 * np.log(2)
    [Parameter("k_div_%d" % i, k_div) for i in range(len(dips))]
    k_death = k_div - (dips*np.log(2))
    [Parameter("k_death_%d" % i, k) for i,k in enumerate(k_death)]
    Parameter('k_div_resistant', 0.04 * np.log(2))
    Parameter('k_death_resistant', 0.005 * np.log(2))

    [Rule("Cell%d_Div" %i, Cell(dip = "%d" %i) >> Cell(dip = "%d" %i) + Cell(dip = "%d" %i),
          model.parameters["k_div_%d" %i]) for i in range(len(dips))]
    [Rule("Cell%d_Death" %i, Cell(dip = "%d" %i) >> None,
          model.parameters["k_death_%d" %i]) for i in range(len(k_death))]
    Rule('Cell_resistant_Div', Cell_resistant() >> Cell_resistant() + Cell_resistant(), k_div_resistant)
    Rule('Cell_resistant_Death', Cell_resistant() >> None, k_death_resistant)


    print(model.rules)

    for exp in range(n_exp):

        # Pre-drug run - all have the same DIP rate +/- stochasticity
        t1 = np.linspace(0,336,337) # 14 days
        sim = BngSimulator(model, tspan=t1, verbose=False)#, seed = 1095205711)
        # Why do the n_cells = 0 start off with 1? SOLVED
        # Use n_runs = n_barcodes
        x1 = sim.run(n_runs = n_barcodes, param_values={"k_death_0": 0.005}, verbose = False) # returns np.array with species and obs
        # all_cells = np.array(x1.observables)
        # cell_tot = all_cells["Obs_All"].T[-1]
        # print(np.array(x1.all).shape)
        # quit()
        # print(x1.all)
        # print(type(x1.all))
        cell_tot = [x[-1]["Obs_Cell0"] for x in x1.all]
        print(cell_tot)
        # print(len(cell_tot))
        # print(int(round(percent*len(cell_tot))))
        # print(list(enumerate(cell_tot)))
        cell_tot_resistant_list = random.sample(list(enumerate(cell_tot)), int(round(percent*len(cell_tot))))
        # cell_tot_resistant = np.random.choice(list(enumerate(cell_tot)), int(round(percent*len(cell_tot))))


        resistant_indecies = []
        for index,elem in cell_tot_resistant_list:
            resistant_indecies.append(index)

        # print(resistant_indecies)
        # print(cell_tot_resistant[[0]])
        cell_tot_resistant = [x for i,x in cell_tot_resistant_list]
        cell_tot_sensitive = [x for i,x in enumerate(cell_tot) if i not in resistant_indecies]

        print(cell_tot_resistant)
        print(cell_tot_sensitive)

        print("Sim 1 Finished.")
        post_drug_counts = []
        quit()

        ### Give resistant and sensitive populations their own simulations
        ## What should I do?
        # setup different cell_pop(s) for resistant and sensitive
        ## sensitive - keep same DIP rate distribution
        ## resistant - either use PySB "resistant" parameters or overwrite in the sim.run call
        # keep index information for easier plotting - all in same cell_pop


        for ind, cell in enumerate(cell_tot_sensitive):
            print("%d:%d" % (exp,ind))
            if cell == 0:
                post_drug_counts.append(0.)
            else:
                # rounding and taking integer is safe way to handle number.0
                cell_pop = np.random.multinomial(int(round(cell)), normal_hist) # *100 for true normal
                # print(cell_pop)

                # Normal Histogram Multinomial Selection of DIP Rates
                plt.figure("DIP Rate Distribution Barcode #%d" % ind)
                plt.bar(dips-0.5*(dips[1]-dips[0]), 1.*cell_pop/int(round(cell)), dips[1]-dips[0],
                        label = "n_cells = %d" %int(cell)) # *100 for true normal
                plt.plot(dips, normal_hist, lw = 2, color = "r")
                plt.legend(loc = 0)
                t2 = np.linspace(0,168,169) # 7 days in drug

                x2 = sim.run(tspan = t2, param_values={"k_death_0": model.parameters['k_death_0'].value},
                             n_sim=1, initials={model.species[i]:pop for i,pop in enumerate(cell_pop)}, verbose= False)
                # ,"cellInit_0": 0}, - FIXED THIS PROBLEM

                post_drug_counts.append(x2.all["Obs_All"][-1])
                print(x1.all[ind]["Obs_Cell0"])
                plt.figure()
                plt.plot(x1.tout[ind], np.log2(x1.all[ind]["Obs_Cell0"]), '0.5', lw = 2)
                a = np.array(x1.observables)["Obs_Cell0"]
                print(np.array([tr[:] for tr in a]))
                # quit()
                # plt.plot(x1.tout, np.array([tr[:] for tr in a]), '0.5')
                plt.plot(t1[-1] + x2.tout[0], np.log2(x2.observables["Obs_All"]), '0.5', lw = 2)
                plt.axvline(x = 336, linewidth = 4, color = 'red')
                plt.axvline(x = 504, linewidth = 4, color = 'blue')
                plt.xlabel("Time (hours)")
                plt.ylabel("log2(cell count)")
                plt.xlim([0,550])
                plt.title("Barcoding Model - 100 barcodes, 10 experiments, 15 states")
                # plt.figure("Experiment #%d Barcode #%d" % (exp,ind))
                # plt.plot(t1, x1.all[int(cell)]["Obs_Cell0"],'0.5', lw=4, alpha=0.25)
                # for i,obs in enumerate(model.observables):
                    # print(x1.all[int(cell)])
                    # quit()
                    # plt.plot(t1, x1.all[obs.name], lw = 2, label = obs.name, color = colors[i])
                    # plt.plot(t1, x1.all[obs.name], '0.5', lw=4, alpha=0.25)
                    # plt.plot(t1[-1]+t2, x2.all[obs.name], '0.5', lw = 4, alpha = 0.25)
                    # plt.plot(t1, x1.all[obs.name], lw = 2, label = obs.name, color = colors[i])
                    # plt.plot(t1[-1]+t2, x2.all[obs.name], lw = 2, label = obs.name)
                # plt.annotate(s = "n_cells = %d" % cell, xy = (0.1,0.1), xycoords = "axes fraction", fontsize = 24)
                # plt.text(-0.04, 2800, r'$\mu=%g$' % (np.mean(distr_all)))
                # plt.legend(loc = 0)
        print(post_drug_counts)
        all_post_drug_counts.append(post_drug_counts)

    print(all_post_drug_counts)
    # np.save("barcoding_data_%dbar%dexp%dstates.npy" % (b, e, s), all_post_drug_counts)
    # np.save("barcoding_data_100bar10exp15states_forpres.npy", all_post_drug_counts)

    plt.show()
#
#
#
#
# print len(model.rules)
# print len(model.initial_conditions)
# print len(model.reactions)
# print model.species

#quit()

plt.figure()
t = linspace(0, 200, 201)
#
sims = 5
sim = BngSimulator(model, tspan=t, verbose=False)
x1 = sim.run(tspan=t, verbose=False, n_runs=sims, cleanup=False, method='ssa')
# tout = x1.tout
y1 = np.array(x1.observables)
print(y1['Obs_All'])
print(y1['Obs_All'].T)
print((np.log2(y1['Obs_All'])).T)
print((np.log2(y1['Obs_All']).T/np.log2(y1['Obs_All']).T[0]))
print(x1.all[-1]["Obs_All"])




plot_mean_min_max('Obs_All', color = 'red')
y = odesolve(model = model,tspan = t, verbose = True)
plt.plot(t, np.log2(y["Obs_All"]/y["Obs_All"][0]), 'r-', lw=4, label = "100% SC01")
def run_barcoding_model(n_exp, n_barcodes, n_cell_types):

    all_post_drug_counts = []
    low_dips = -0.062
    high_dips = -0.002
    dips = np.linspace(low_dips, high_dips, n_cell_types)
    dip_mean = -0.033
    dip_var = 0.01

    # Discretize normal distribution of dip rates - used in post drug simulation
    normal = sp.norm.pdf(dips, dip_mean, dip_var)
    print(normal)
    sum = 0
    for i in range(1, n_cell_types):
        sum += normal[i] * (dips[i] - dips[i - 1])
    print(sum)

    normal_hist = normal * (dips[1] - dips[0])
    print(normal_hist)
    print(dips)


    Model()
    [Monomer("Cell", ['dip'], {'dip': ["%d" %i for i in range(n_cell_types)]})]
    print(model.monomers)

    # Monomer("Cell", ['dip'], {"dip": ["0","1"]})


    Parameter('cellInit_0', 1)
    [Parameter('cellInit_%d' %i)for i in range(1,n_cell_types)]
    # Parameter('Cell_1init')
    print(model.parameters)

    Initial(Cell(dip = "0"), cellInit_0) # could not be a string - parameter only - didn't know how to set up
    [Initial(Cell(dip = "%d" %i), model.parameters["cellInit_%d" %i]) for i in range(1,n_cell_types)]
    # for ic in model.initial_conditions:
    #     print ic
    print(model.initial_conditions)

    [Observable("Obs_Cell%d" %i, Cell(dip = "%d" %i)) for i in range(n_cell_types)]
    Observable("Obs_All", Cell())
    print(model.observables)

    print(dips)
    k_div = 0.03
    [Parameter("k_div_%d" % i, k_div) for i in range(len(dips))]
    k_death = -dips+k_div
    [Parameter("k_death_%d" % i, k) for i,k in enumerate(k_death)]
    print(model.parameters)

    [Rule("Cell%d_Div" %i, Cell(dip = "%d" %i) >> Cell(dip = "%d" %i) + Cell(dip = "%d" %i),
          model.parameters["k_div_%d" %i]) for i in range(len(dips))]
    [Rule("Cell%d_Death" %i, Cell(dip = "%d" %i) >> None,
          model.parameters["k_death_%d" %i]) for i in range(len(k_death))]

    print(model.rules)

    for exp in range(n_exp):

        t1 = np.linspace(0,336,337) # 14 days
        sim = BngSimulator(model, tspan=t1, verbose=False)#, seed = 1095205711)
        # Why do the n_cells = 0 start off with 1?
        x1 = sim.run(n_runs = n_barcodes, param_values={"k_death_0": 0.005}, verbose = False) # returns np.array with species and obs
        # all_cells = np.array(x1.observables)
        # cell_tot = all_cells["Obs_All"].T[-1]
        # print(np.array(x1.all).shape)
        # quit()
        # print(x1.all)
        # print(type(x1.all))
        cell_tot = [x[-1]["Obs_Cell0"] for x in x1.all]
        print(cell_tot)

        print("Sim 1 Finished.")

        post_drug_counts = []

        for ind, cell in enumerate(cell_tot):
            print("%d:%d" % (exp,ind))
            if cell == 0:
                post_drug_counts.append(0.)
            else:
                # rounding and taking integer is safe way to handle number.0
                cell_pop = np.random.multinomial(int(round(cell)), normal_hist) # *100 for true normal
                # print(cell_pop)

                ## Normal Histogram Multinomial Selection of DIP Rates
                # plt.figure("DIP Rate Distribution Barcode #%d" % ind)
                # plt.bar(dips-0.5*(dips[1]-dips[0]), 1.*cell_pop/int(round(cell)), dips[1]-dips[0], label = "n_cells = %d" %int(cell)) # *100 for true normal
                # plt.plot(dips, normal_hist, lw = 2, color = "r")
                # plt.legend(loc = 0)
                t2 = np.linspace(0,168,169) # 7 days in drug

                x2 = sim.run(tspan = t2, param_values={"k_death_0": model.parameters['k_death_0'].value},
                             n_sim=1, initials={model.species[i]:pop for i,pop in enumerate(cell_pop)}, verbose= False)
                # ,"cellInit_0": 0}, - FIXED THIS PROBLEM

                post_drug_counts.append(x2.all["Obs_All"][-1])

                # plt.figure("Experiment #%d Barcode #%d" % (exp,ind))
                # plt.plot(t1, x1.all[int(cell)]["Obs_Cell0"],'0.5', lw=4, alpha=0.25)
                # for i,obs in enumerate(model.observables):
                    # plt.plot(t1, x1.all[obs.name], lw = 2, label = obs.name, color = colors[i])
                    # plt.plot(t1[-1]+t2, x2.all[obs.name], lw = 2, label = obs.name)
                # plt.annotate(s = "n_cells = %d" % cell, xy = (0.1,0.1), xycoords = "axes fraction", fontsize = 24)
                # plt.text(-0.04, 2800, r'$\mu=%g$' % (np.mean(distr_all)))
                # plt.legend(loc = 0)
        print(post_drug_counts)
        all_post_drug_counts.append(post_drug_counts)

    print(all_post_drug_counts)
    np.save("barcoding_data_%dbar%dexp%dstates.npy" % (b, e, s), all_post_drug_counts)
Beispiel #23
0
 def setUp(self):
     self.model = robertson.model
     self.model.reset_equations()
     self.sim = BngSimulator(self.model, tspan=np.linspace(0, 1))
     self.param_values_2sets = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
Beispiel #24
0
import matplotlib.pyplot as plt
import numpy as np
from pysb.simulator.bng import BngSimulator
from kinase_cascade import model

# We will integrate from t=0 to t=40
t = np.linspace(0, 40, 50)

# Simulate the model
print("Simulating...")
sim = BngSimulator(model)
x = sim.run(tspan=t, verbose=False, n_runs=5, method='ssa')
tout = x.tout
y = np.array(x.observables)
plt.plot(tout.T, y['ppMEK'].T)
plt.show()
Beispiel #25
0
num_u = 100
u_line = np.linspace(u_min, u_max, num_u)
s_line = np.zeros(num_u)
for i in range(0, num_u):
    s_line[i] = (beta/d_s)*u_line[i]
# ----------------------------------------------------------   

# Define observed times.
tmin = 0
tmax = 50
num_t = 100
t = np.linspace(tmin, tmax, num_t)


# Simulate model.
simulator = BngSimulator(model, tspan=t)
simresult = simulator.run(method='ssa')  # ssa: discrete stochastic simulations
yout = simresult.all


# Plot results.
plt.plot(t, yout['o_g_0'], label="$g_0$")
plt.plot(t, yout['o_g_1'], label="$g_1$")
plt.plot(t, yout['o_u'], label='$u$')
plt.plot(t, yout['o_s'], label="$s$")
plt.plot(t, yout['o_p'], label="$p$")



plt.xlabel('$t$')
plt.ylabel('molecule number')
Beispiel #26
0
class TestNfSim(object):
    def setUp(self):
        self.model = robertson.model
        self.model.reset_equations()
        self.sim = BngSimulator(self.model, tspan=np.linspace(0, 1))
        self.param_values_2sets = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]

    def test_nfsim_2runs(self):
        x = self.sim.run(n_runs=1, method='nf', seed=_BNG_SEED)
        observables = np.array(x.observables)
        assert len(observables) == 50

        A = self.model.monomers['A']
        x = self.sim.run(n_runs=2,
                         method='nf',
                         tspan=np.linspace(0, 1),
                         initials={A(): 100},
                         seed=_BNG_SEED)
        assert (x.nsims == 2)
        assert np.allclose(x.dataframe.loc[0, 0.0], [100.0, 0.0, 0.0])

    def test_nfsim_2initials(self):
        # Test with two initials
        A = self.model.monomers['A']
        x2 = self.sim.run(method='nf',
                          tspan=np.linspace(0, 1),
                          initials={A(): [100, 200]},
                          seed=_BNG_SEED)
        assert x2.nsims == 2
        assert np.allclose(x2.dataframe.loc[0, 0.0], [100.0, 0.0, 0.0])
        assert np.allclose(x2.dataframe.loc[1, 0.0], [200.0, 0.0, 0.0])

    def test_nfsim_2params(self):
        # Test with two param_values
        x3 = self.sim.run(method='nf',
                          tspan=np.linspace(0, 1),
                          param_values=self.param_values_2sets,
                          seed=_BNG_SEED)
        assert x3.nsims == 2
        assert np.allclose(x3.param_values, self.param_values_2sets)

    def test_nfsim_2initials_2params(self):
        # Test with two initials and two param_values
        A = self.model.monomers['A']
        x = self.sim.run(method='nf',
                         tspan=np.linspace(0, 1),
                         initials={A(): [101, 201]},
                         param_values=[[1, 2, 3, 4, 5, 6],
                                       [7, 8, 9, 10, 11, 12]],
                         seed=_BNG_SEED)
        assert x.nsims == 2
        assert np.allclose(x.dataframe.loc[0, 0.0], [101.0, 0.0, 0.0])

    @raises(ValueError)
    def test_nfsim_different_initials_lengths(self):
        A = self.model.monomers['A']
        B = self.model.monomers['B']

        sim = BngSimulator(self.model,
                           tspan=np.linspace(0, 1),
                           initials={B(): [150, 250, 350]})
        sim.run(initials={A(): [275, 375]})

    @raises(ValueError)
    def test_nfsim_different_initials_params_lengths(self):
        A = self.model.monomers['A']

        sim = BngSimulator(self.model,
                           tspan=np.linspace(0, 1),
                           initials={A(): [150, 250, 350]},
                           param_values=self.param_values_2sets)