def Detector(e=P(0, 0), height=1.0, label=None):
    """
    Detector

    @param height: height of detector
    @type height: float

    @param label: detector label
    @type label: string
    """
    if label is not None:
        return Group(Path(e - P(0, height / 2.0), e + P(0, height / 2.0)),
                     Circle(c=e, r=height / 2.0, start=0, end=180), label)
    else:
        return Group(Path(e - P(0, height / 2.0), e + P(0, height / 2.0)),
                     Circle(c=e, r=height / 2.0, start=0, end=180))
Beispiel #2
0
    def __init__(self, **options):
        # intitialise base class
        Group.__init__(self, **options)

        self.sep = 0.25
        self.width = 1.0
        self.angle = 0.0
        self.pinLength = 0.5
        self.fg = Color(0)
        self.bg = Color(1)

        # process the options if any
        self.sep = options.get("sep", self.sep)
        self.width = options.get("width", self.width)
        self.angle = options.get("angle", self.angle)
        self.pinLength = options.get("pinLength", self.pinLength)
        self.fg = options.get("fg", self.fg)
        self.bg = options.get("bg", self.bg)

        pinIn = Group(
                Path( 
                    P(0, 0), 
                    P(self.pinLength, 0),
                    )
                )
        cap = Group( 
                Path(pinIn.e+P(0, -self.width/2.0), 
                    pinIn.e+P(0, self.width/2.0)), 
                Path(pinIn.e+P(self.sep, -self.width/2.0), 
                    pinIn.e+P(self.sep, self.width/2.0)),
                )
        pinOut = Path(
                cap.e, 
                cap.e+P(self.pinLength, 0))

        # group the objects together
        obj = Group(pinIn, pinOut, cap)

        # apply the colours
        obj.apply(fg=self.fg, bg=self.bg)

        # rotate if necessary
        if self.angle != 0.0:
            obj.rotate(self.angle, p=obj.c)

        # set the object to myself
        self.append(obj)
Beispiel #3
0
    def __init__(self, **options):
        # initialise the base class
        Gate.__init__(self, **options)

        # process the options if any
        self.height = options.get("height", self.height)
        self.width = options.get("width", self.width)
        self.angle = options.get("angle", self.angle)
        self.pinLength = options.get("pinLength", self.pinLength)
        self.fg = options.get("fg", self.fg)
        self.bg = options.get("bg", self.bg)
 
        # now draw the gate
        pl = self.pinLength
        pinEdgeDist = 0.1*self.height
        pinBackDist = -0.08*self.width
        bodyHeight = self.height
        bodyWidth = self.width - 2.0*pl
        rad = 0.1

        gateBody = Group(
                Path( 
                    P(-pinBackDist, -pinEdgeDist), 
                    C(90, 225),
                    P(1.25*bodyWidth, bodyHeight/2.0), 
                    C(-45, 90),
                    P(-pinBackDist, bodyHeight+pinEdgeDist), 
                    C(140, 40),
                    closed=1,
                    )
                )
        gatePinIn1 = Path(
                P(0, bodyHeight-pinEdgeDist), 
                P(pl, bodyHeight-pinEdgeDist))
        gatePinIn2 = Path(
                P(0, pinEdgeDist), 
                P(pl, pinEdgeDist))
        gatePinOut = Group( 
                Circle(w=gateBody.e, r=rad), 
                Path(
                    gateBody.e+P(0.2, 0), 
                    gateBody.e+P(pl+0.2, 0)),
                )

        # collect the objects together
        obj = Group(gateBody, gatePinIn1, gatePinIn2, gatePinOut)

        # apply the colours
        obj.apply(fg=self.fg, bg=self.bg)

        # rotate if necessary
        if self.angle != 0.0:
            obj.rotate(self.angle, p=obj.c)

        # nwo set the object to myself
        self.append(obj)
Beispiel #4
0
    def __init__(self, text, **options):
        Group.__init__(self, **options)

        # set up tex width ... this relies on latex notion of
        # a point being accurate ... adjust for tex_scale too
        width_pp = int(self.width / float(self.iscale) * defaults.units)

        t = TeX(r'\begin{minipage}{%dpt}%s\end{minipage}' % (width_pp, text),
                fg=self.fg,
                iscale=self.iscale)

        # use this for alignment as the latex bounding box may be smaller
        # than the full width
        a = Area(width=self.width, height=0)

        Align(t, a, a1=self.align, a2=self.align, space=0)

        self.append(a, t)
def ZGate(c=P(0, 0), side=0.5):
    """
    Z gate

    @param side: length of the box side
    @type side: float
    """
    return Group(Rectangle(width=side, height=side, c=c, bg=Color("white")),
                 TeX(r'Z', c=c))
def Cnot(c=P(0, 0), targetDist=1.0, direction="up"):
    """
    Controlled NOT gate

    @param targetDist: distance to the target rail
    @type targetDist: float

    @param direction: in which direction is the target rail?  up/down
    @type direction: string
    """
    if direction is "up":
        return Group(Circle(r=0.06, bg=Color("black"), c=c),
                     Circle(r=0.2, c=c + P(0, targetDist)),
                     Path(c, c + P(0, targetDist + 0.2)))
    elif direction is "down":
        return Group(Circle(r=0.06, bg=Color("black"), c=c),
                     Circle(r=0.2, c=c + P(0, -targetDist)),
                     Path(c, c + P(0, -targetDist - 0.2)))
Beispiel #7
0
    def __init__(self, **options):
        # initialise the base class
        Gate.__init__(self, **options)

        # process the options if any
        self.height = options.get("height", self.height)
        self.width = options.get("width", self.width)
        self.angle = options.get("angle", self.angle)
        self.pinLength = options.get("pinLength", self.pinLength)
        self.fg = options.get("fg", self.fg)
        self.bg = options.get("bg", self.bg)
 
        # now draw the gate
        buff = 0.0
        pinEdgeDist = 0.1*self.height
        pl = self.pinLength
        bodyHeight = self.height
        bodyWidth = self.width - 2.0*pl
        rad = 0.1

        gateBody = Group(
                Path(
                    P(pl, buff+0), 
                    P(pl, buff+bodyHeight), 
                    P(pl+bodyWidth/2., buff+bodyHeight)), 
                Circle(c=P(pl+bodyWidth/2., buff+bodyHeight/2.), 
                    r=bodyHeight/2., start=0, end=180), 
                Path(
                    P(pl+bodyWidth/2., buff+0), 
                    P(pl, buff+0)))
        gatePinIn1 = Path(
                P(0, bodyHeight-pinEdgeDist), 
                P(pl, bodyHeight-pinEdgeDist))
        gatePinIn2 = Path(
                P(0, pinEdgeDist), 
                P(pl, pinEdgeDist))
        gatePinOut = Group( 
                Circle(c=P(bodyWidth+pl+rad, bodyHeight/2.), r=rad), 
                Path(
                    P(bodyWidth+pl+2.*rad, bodyHeight/2.), 
                    P(bodyWidth+2.*rad+2.*pl, bodyHeight/2.)))

        # collect the objects together
        obj = Group(gateBody, gatePinIn1, gatePinIn2, gatePinOut)

        # apply the colours
        obj.apply(fg=self.fg, bg=self.bg)

        # rotate if necessary
        if self.angle != 0.0:
            obj.rotate(self.angle, p=obj.c)

        # now set the object to myself
        self.append(obj)
Beispiel #8
0
    def __init__(self, **options):
        # inherit from the base class
        Group.__init__(self, **options)

        # process the options if any
        self.fg = options.get("fg", self.fg)
        self.bg = options.get("bg", self.bg)
        self.height = options.get("height", self.height)
        self.thickness = options.get("thickness", self.thickness)
        self.angle = options.get("angle", self.angle)
        self.type = options.get("type", self.type)

        # determine what type of lens to make
        if self.type == "convex":
            leftCurveAngle = -30
            rightCurveAngle = -30
        elif self.type == "concave":
            leftCurveAngle = 30
            rightCurveAngle = 30
        else:
            print "Unknown lens type, defaulting to concave"
            leftCurveAngle = 30
            rightCurveAngle = 30

        # make the lens
        lens = Group()
        lens.append(
            Path(
                P(0, 0),
                C(leftCurveAngle, 180 - leftCurveAngle),
                P(0, self.height),
                P(self.thickness, self.height),
                C(-180 + rightCurveAngle, -rightCurveAngle),
                P(self.thickness, 0),
                closed=1,
                fg=self.fg,
                bg=self.bg,
            ))

        # rotate if necessary
        lens.rotate(self.angle, p=lens.bbox().c)

        self.append(lens)
Beispiel #9
0
    def __init__(self, **options):
        # intitialise base class
        Group.__init__(self, **options)

        self.length = 3.0
        self.width = 1.0
        self.angle = 0.0
        self.pinLength = 0.5
        self.fg = Color(0)
        self.bg = Color(1)

        # process the options if any
        self.length = options.get("length", self.length)
        self.width = options.get("width", self.width)
        self.angle = options.get("angle", self.angle)
        self.pinLength = options.get("pinLength", self.pinLength)
        self.fg = options.get("fg", self.fg)
        self.bg = options.get("bg", self.bg)

        pinIn = Group(
                Path( 
                    P(0, 0), 
                    P(self.pinLength, 0)
                    )
                )
        resistor = Rectangle(w=pinIn.e, width=self.length, height=self.width)
        pinOut = Path(
                resistor.e, 
                resistor.e+P(self.pinLength, 0))

        # collect the objects together
        obj = Group(pinIn, pinOut, resistor)

        # apply the colours
        obj.apply(fg=self.fg, bg=self.bg)

        # rotate if necessary
        if self.angle != 0.0:
            obj.rotate(self.angle, p=obj.c)

        # return object to myself
        self.append(obj)
Beispiel #10
0
    def background(self):
        '''
        Return background for poster
        '''
        area = self.area()

        signature = Text(
            'Created with PyScript.  http://pyscript.sourceforge.net',
            size=14,
            fg=Color(1))

        signature.se = area.se + P(-.5, .5)
        return Group(
            Rectangle(width=area.width,
                      height=area.height,
                      fg=None,
                      bg=self.bg),
            signature,
        )
def detector(**options):
    '''
    @return: a D shaped detector
    '''
    r = 0.3
    c = 0.65 * r
    path = [
        P(0, -r),
        P(0, r),
        C(P(c, r), P(r, c)),
        P(r, 0),
        C(P(r, -c), P(c, -r)),
        P(0, -r)
    ]
    options['bg'] = options.get('bg', Color(.8))
    options['closed'] = 1
    p = apply(Path, path, options)
    a = Area(width=r, height=2 * r, e=P(0, 0))

    return Group(a, p)
def classicalpath(*paths):
    '''
    @param paths: 1 or more Path() objects

    @return: classical path
    '''
    g = Group()

    for path in paths:
        g.append(path.copy(linewidth=2, fg=Color(0)))

    # reuse these paths
    for path in paths:
        g.append(path(linewidth=1, fg=Color(1)))

    return g
def cbox(obj, x, yt, yc):
    '''
    @param obj: the object to put a box around
    @type obj: object

    @param x: x position of line and centre of box
    @type x: float

    @param yt: y position of target
    @type yt: float

    @param yc: y position of control
    @type yc: float

    @return: a controlled box
    '''
    g = Group(
        Path(P(x, yt), P(x, yc)),
        Boxed(obj, c=P(x, yt), bg=Color(1)),
        Dot(P(x, yc)),
    )
    return g
Beispiel #14
0
    def __init__(self, **options):
        # inherit from the base class
        Group.__init__(self, **options)

        # process the options if any
        self.fg = options.get("fg", self.fg)
        self.bg = options.get("bg", self.bg)
        self.height = options.get("height", self.height)
        self.width = options.get("width", self.width)
        self.angle = options.get("angle", self.angle)

        # make the modulator
        modulator = Group()
        modulator.append(
            Path(
                P(0, 0),
                P(0, self.height),
                P(self.width, self.height),
                P(self.width, 0),
                closed=1,
                fg=self.fg,
                bg=self.bg,
            ))
        modulator.append(
            Path(
                P(0, -self.buf),
                P(self.width, -self.buf),
                fg=self.fg,
                bg=self.bg,
            ))
        modulator.append(
            Path(
                P(0, self.height + self.buf),
                P(self.width, self.height + self.buf),
                fg=self.fg,
                bg=self.bg,
            ))

        # rotate if necessary
        modulator.rotate(self.angle, p=modulator.bbox().c)

        self.append(modulator)
Beispiel #15
0
    def __init__(self, **options):
        Group.__init__(self, **options)
        p = Group()

        self.fg = options.get("fg", self.fg)
        self.bg = options.get("bg", self.bg)
        if self.width > self.height:
            p.append(
                Path(P(0, 0),
                     P(0, self.height),
                     P(self.width - self.height / 2.0, self.height),
                     C(90, 0),
                     P(self.width, self.height / 2.0),
                     C(180, 90),
                     P(self.width - self.height / 2.0, 0),
                     fg=self.fg,
                     bg=self.bg,
                     closed=1))
        else:
            p.append(
                Path(P(0, 0),
                     P(0, self.height),
                     C(90, 0),
                     P(self.width, self.height / 2.0),
                     C(180, 90),
                     closed=1))

        # rotate if necessary
        self.angle = options.get("angle", self.angle)
        p.rotate(self.angle, p=p.bbox().c)

        self.append(p)
Beispiel #16
0
    def __init__(self, **options):
        # inherit from the base class
        Group.__init__(self, **options)

        # process the options if any
        self.fg = options.get("fg", self.fg)
        self.bg = options.get("bg", self.bg)
        self.length = options.get("length", self.length)
        self.thickness = options.get("thickness", self.thickness)
        self.angle = options.get("angle", self.thickness)
        self.flicks = options.get("flicks", self.flicks)

        # make the mirror itself
        mirror = Group()
        mirror.append(
            Path(P(0, 0),
                 P(0, self.length),
                 P(self.thickness, self.length),
                 P(self.thickness, 0),
                 closed=1,
                 fg=self.fg,
                 bg=self.bg))

        if self.flicks:
            # make the flicks on the back of the mirror
            flickLen = 0.15
            flicksObj = Group()
            for i in range(10):
                flicksObj.append(
                    Path(P((i + 1.0) * self.length / 10.0, self.thickness),
                         P(i * self.length / 10.0, self.thickness + flickLen),
                         fg=self.fg,
                         bg=self.bg))

            mirror.append(flicksObj)

        # rotate the mirror if necessary
        if self.angle != 0.0:
            mirror.rotate(self.angle, p=mirror.bbox().c)

        # make the mirror the current object
        self.append(mirror)