def calculate_droplet_volume(self, h, w, wIn, epsilon, qD, qC): """From paper DOI:10.1039/c002625e. Calculating the droplet volume created in a T-junction Unit is volume in m^3 :param Symbol h: Height of channel :param Symbol w: Width of continuous/output channel :param Symbol wIn: Width of dispersed_channel :param Symbol epsilon: Equals 0.414*radius of rounded edge where channels join :param Symbol qD: Flow rate in dispersed_channel :param Symbol qC: Flow rate in continuous_channel """ q_gutter = Real(0.1) # normalizedVFill = 3pi/8 - (pi/2)(1 - pi/4)(h/w) v_fill_simple = Minus( Times(Real((3, 8)), Real(math.pi)), Times( Times(Div(Real(math.pi), Real(2)), Minus(Real(1), Div(Real(math.pi), Real(4)))), Div(h, w))) hw_parallel = Div(Times(h, w), Plus(h, w)) # r_pinch = w+((wIn-(hw_parallel - eps))+sqrt(2*((wIn-hw_parallel)*(w-hw_parallel)))) r_pinch = Plus( w, Plus( Minus(wIn, Minus(hw_parallel, epsilon)), Pow( Times( Real(2), Times(Minus(wIn, hw_parallel), Minus(w, hw_parallel))), Real(0.5)))) r_fill = w alpha = Times( Minus(Real(1), Div(Real(math.pi), Real(4))), Times( Pow(Minus(Real(1), q_gutter), Real(-1)), Plus( Minus(Pow(Div(r_pinch, w), Real(2)), Pow(Div(r_fill, w), Real(2))), Times( Div(Real(math.pi), Real(4)), Times(Minus(Div(r_pinch, w), Div(r_fill, w)), Div(h, w)))))) return Times(Times(h, Times(w, w)), Plus(v_fill_simple, Times(alpha, Div(qD, qC))))
def cosine_law_crit_angle(self): """Use cosine law to find cos^2(theta) between three points node1---node2---node3 to assert that it is less than cos^2(thetaC) where thetaC is the critical crossing angle :param node1: Outside node :param node2: Middle connecting node :param node3: Outside node :returns: cos^2 as calculated using cosine law (a_dot_b^2/a^2*b^2) """ node1 = self.get_input_nodes().values()[0] node2 = self.get_input_nodes().values()[1] node3 = self.get_output_node() # Lengths of channels aX = Minus(node1.get_x(), node2.get_x()) aY = Minus(node1.get_y(), node2.get_y()) bX = Minus(node3.get_x(), node2.get_x()) bY = Minus(node3.get_y(), node2.get_y()) # Dot products between each channel a_dot_b_squared = Pow(Plus(Times(aX, bX), Times(aY, bY)), Real(2)) a_squared_b_squared = Times( Plus(Times(aX, aX), Times(aY, aY)), Plus(Times(bX, bX), Times(bY, bY)), ) return Div(a_dot_b_squared, a_squared_b_squared)
def sympy2pysmt(expression): """Converts a sympy formula representing a polynomial into a pysmt formula. Args: expression: The sympy formula to convert. Returns: FNode: The pysmt formula. Raises: WMIParsingException: If the method fails to parse the formula. """ if expression.is_Add: return Plus(map(sympy2pysmt, expression.args)) elif expression.is_Mul: return Times(map(sympy2pysmt, expression.args)) elif expression.is_Pow: base, exp = expression.args return Pow(sympy2pysmt(base), sympy2pysmt(exp)) elif expression.is_Symbol: return Symbol(str(expression), REAL) elif expression.is_Number: return Real(float(expression)) else: raise WMIParsingException(WMIParsingException.CANNOT_CONVERT_SYMPY_FORMULA_TO_PYSMT, expression)
def regularize(self, l=0.5): w_reg_list = [] for i, (weight, _) in self.net_formula.items(): # print(i) w_reg_list.append(Plus([Pow(w, Real(2)) for w_r in weight for w in w_r])) # print(w_reg_list[-1]) regularize = And([And(GE(w, Real(-l)), LT(w, Real(l))) for w in w_reg_list]) return regularize
def test_div_pow(self): x = FreshSymbol(REAL) f = Equals(Times(Real(4), Pow(x, Real(-1))), Real(2)) self.assertTrue(is_sat(f)) f = Equals(Div(Real(4), x), Real(2)) self.assertTrue(is_sat(f, solver_name="z3")) f = Equals(Times(x, x), Real(16)) self.assertTrue(is_sat(f))
def _random_monomial(self, minsize=None, maxsize=None): minsize = minsize if minsize else 1 maxsize = maxsize if maxsize else len(self.reals) size = randint(minsize, maxsize) rvars = sample(self.reals, size) coeff = self._random_coefficient() pows = [coeff] for rvar in rvars: exponent = Real(randint(0, self.MAX_EXPONENT)) pows.append(Pow(rvar, exponent)) return Times(pows)
def pythagorean_length(self): # TODO: How do I test this!! """Use Pythagorean theorem to assert that the channel length (hypoteneuse) squared is equal to the legs squared so channel length is solved for :param str channel_name: Name of the channel :returns: SMT expression of the equality of the side lengths squared and the channel length squared """ port_in = self.get_port_in(self) port_out = self.get_port_out(self) side_a = Minus(port_in.get_x(), port_in.get_x()) side_b = Minus(port_in.get_y(), port_in.get_y()) a_squared = Pow(side_a, Real(2)) b_squared = Pow(side_b, Real(2)) a_squared_plus_b_squared = Plus(a_squared, b_squared) c_squared = Pow(self.get_length(), Real(2)) return Equals(a_squared_plus_b_squared, c_squared)
def test_div_pow(self): x = FreshSymbol(REAL) f = Equals(Times(Real(4), Pow(x, Real(-1))), Real(2)) try: self.assertTrue(is_sat(f)) except SolverReturnedUnknownResultError: pass f = Equals(Div(Real(4), x), Real(2)) try: self.assertTrue(is_sat(f, solver_name="z3")) except SolverReturnedUnknownResultError: pass f = Equals(Times(x, x), Real(16)) try: self.assertTrue(is_sat(f)) except SolverReturnedUnknownResultError: pass
def calculate_flow_rate(self): """Calculate the flow rate into a port based on the cross sectional area of the channel it flows into, the pressure and the density eqn from https://en.wikipedia.org/wiki/Hagen-Poiseuille_equation flow_rate = area * sqrt(2*pressure/density) Unit for flow rate is m^3/s :param str name: Name of the port :returns: Flow rate determined from port pressure and area of connected channels """ areas = [] for outgoing_channel in self.outgoing_channels: areas.append(outgoing_channel.calculate_channel_area()) total_area = Plus(areas) return Times( total_area, Pow(Div(Times(Real(2), self.get_pressure()), self.get_density()), Real(0.5)))
def calculate_resistance(self): """Calculate the droplet resistance in a channel using: R = (12 * mu * L) / (w * h^3 * (1 - 0.630 (h/w)) ) This formula assumes that channel height < width, so the first term returned is the assertion for that Unit for resistance is kg/(m^4*s) :param str channel_name: Name of the channel :returns: list -- two SMT expressions, first asserts that channel height is less than width, second is the above expression in SMT form """ w = self.get_width() h = self.get_height() mu = self.get_viscosity() chL = self.get_length() return (LT(h, w), Div( Times(Real(12), Times(mu, chL)), Times( w, Times(Pow(h, Real(3)), Minus(Real(1), Times(Real(0.63), Div(h, w)))))))
def sympy2pysmt(expression): """Converts a sympy formula representing a polynomial into a pysmt formula. Keyword arguments: expression -- sympy formula. Raises: WMIParsingError -- If it fails to parse the formula. """ if expression.is_Add: return Plus(map(sympy2pysmt, expression.args)) elif expression.is_Mul: return Times(map(sympy2pysmt, expression.args)) elif expression.is_Pow: base, exp = expression.args return Pow(sympy2pysmt(base), sympy2pysmt(exp)) elif expression.is_Symbol: return Symbol(str(expression), REAL) elif expression.is_Number: return Real(float(expression)) else: msg = "Couldn't parse the sympy formula: " + str(expression) raise WMIParsingError(msg, None)
def test_polynomial_from_smt_pow(): x, y, z = [Symbol(n, REAL) for n in "xyz"] formula = Pow(x, Real(2)) * 2 should_be = {("x", "x"): 2.0} assert Polynomial.from_smt(formula).poly_dict == should_be
def test_constant_pow_constant(self): assert self.evaluate(Pow(Real(3), Real(6))) == 729
def test_constant_pow_constant(self): assert self.evaluate(Pow(Real(3), Real(6))) == [3 ** 6 for _ in range(5)]
def test_var_pow_constant(self): assert self.evaluate(Pow(self.x, Real(2))) == [self.values[i, 2] ** 2 for i in range(5)]
def get_full_example_formulae(environment=None): """Return a list of Examples using the given environment.""" if environment is None: environment = get_env() with environment: x = Symbol("x", BOOL) y = Symbol("y", BOOL) p = Symbol("p", INT) q = Symbol("q", INT) r = Symbol("r", REAL) s = Symbol("s", REAL) aii = Symbol("aii", ARRAY_INT_INT) ari = Symbol("ari", ArrayType(REAL, INT)) arb = Symbol("arb", ArrayType(REAL, BV8)) abb = Symbol("abb", ArrayType(BV8, BV8)) nested_a = Symbol("a_arb_aii", ArrayType(ArrayType(REAL, BV8), ARRAY_INT_INT)) rf = Symbol("rf", FunctionType(REAL, [REAL, REAL])) rg = Symbol("rg", FunctionType(REAL, [REAL])) ih = Symbol("ih", FunctionType(INT, [REAL, INT])) ig = Symbol("ig", FunctionType(INT, [INT])) bf = Symbol("bf", FunctionType(BOOL, [BOOL])) bg = Symbol("bg", FunctionType(BOOL, [BOOL])) bv8 = Symbol("bv1", BV8) bv16 = Symbol("bv2", BV16) result = [ # Formula, is_valid, is_sat, is_qf Example(hr="(x & y)", expr=And(x, y), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BOOL), Example(hr="(x <-> y)", expr=Iff(x, y), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BOOL), Example(hr="((x | y) & (! (x | y)))", expr=And(Or(x, y), Not(Or(x, y))), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BOOL), Example(hr="(x & (! y))", expr=And(x, Not(y)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BOOL), Example(hr="(False -> True)", expr=Implies(FALSE(), TRUE()), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BOOL), # # LIA # Example(hr="((q < p) & (x -> y))", expr=And(GT(p, q), Implies(x, y)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_IDL), Example(hr="(((p + q) = 5) & (q < p))", expr=And(Equals(Plus(p, q), Int(5)), GT(p, q)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LIA), Example(hr="((q <= p) | (p <= q))", expr=Or(GE(p, q), LE(p, q)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_IDL), Example(hr="(! (p < (q * 2)))", expr=Not(LT(p, Times(q, Int(2)))), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LIA), Example(hr="(p < (p - (5 - 2)))", expr=GT(Minus(p, Minus(Int(5), Int(2))), p), is_valid=False, is_sat=False, logic=pysmt.logics.QF_IDL), Example(hr="((x ? 7 : ((p + -1) * 3)) = q)", expr=Equals( Ite(x, Int(7), Times(Plus(p, Int(-1)), Int(3))), q), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LIA), Example(hr="(p < (q + 1))", expr=LT(p, Plus(q, Int(1))), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LIA), # # LRA # Example(hr="((s < r) & (x -> y))", expr=And(GT(r, s), Implies(x, y)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_RDL), Example(hr="(((r + s) = 28/5) & (s < r))", expr=And(Equals(Plus(r, s), Real(Fraction("5.6"))), GT(r, s)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LRA), Example(hr="((s <= r) | (r <= s))", expr=Or(GE(r, s), LE(r, s)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_RDL), Example(hr="(! ((r * 2.0) < (s * 2.0)))", expr=Not(LT(Div(r, Real((1, 2))), Times(s, Real(2)))), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LRA), Example(hr="(! (r < (r - (5.0 - 2.0))))", expr=Not(GT(Minus(r, Minus(Real(5), Real(2))), r)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_RDL), Example(hr="((x ? 7.0 : ((s + -1.0) * 3.0)) = r)", expr=Equals( Ite(x, Real(7), Times(Plus(s, Real(-1)), Real(3))), r), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LRA), # # EUF # Example(hr="(bf(x) <-> bg(x))", expr=Iff(Function(bf, (x, )), Function(bg, (x, ))), is_valid=False, is_sat=True, logic=pysmt.logics.QF_UF), Example(hr="(rf(5.0, rg(r)) = 0.0)", expr=Equals(Function(rf, (Real(5), Function(rg, (r, )))), Real(0)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_UFLRA), Example(hr="((rg(r) = (5.0 + 2.0)) <-> (rg(r) = 7.0))", expr=Iff(Equals(Function(rg, [r]), Plus(Real(5), Real(2))), Equals(Function(rg, [r]), Real(7))), is_valid=True, is_sat=True, logic=pysmt.logics.QF_UFLRA), Example( hr="((r = (s + 1.0)) & (rg(s) = 5.0) & (rg((r - 1.0)) = 7.0))", expr=And([ Equals(r, Plus(s, Real(1))), Equals(Function(rg, [s]), Real(5)), Equals(Function(rg, [Minus(r, Real(1))]), Real(7)) ]), is_valid=False, is_sat=False, logic=pysmt.logics.QF_UFLRA), # # BV # Example(hr="((1_32 & 0_32) = 0_32)", expr=Equals(BVAnd(BVOne(32), BVZero(32)), BVZero(32)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((! 2_3) = 5_3)", expr=Equals(BVNot(BV("010")), BV("101")), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((7_3 xor 0_3) = 0_3)", expr=Equals(BVXor(BV("111"), BV("000")), BV("000")), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BV), Example(hr="((bv1::bv1) u< 0_16)", expr=BVULT(BVConcat(bv8, bv8), BVZero(16)), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BV), Example(hr="(1_32[0:7] = 1_8)", expr=Equals(BVExtract(BVOne(32), end=7), BVOne(8)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="(0_8 u< (((bv1 + 1_8) * 5_8) u/ 5_8))", expr=BVUGT( BVUDiv(BVMul(BVAdd(bv8, BVOne(8)), BV(5, width=8)), BV(5, width=8)), BVZero(8)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="(0_16 u<= bv2)", expr=BVUGE(bv16, BVZero(16)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="(0_16 s<= bv2)", expr=BVSGE(bv16, BVZero(16)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BV), Example( hr="((0_32 u< (5_32 u% 2_32)) & ((5_32 u% 2_32) u<= 1_32))", expr=And( BVUGT(BVURem(BV(5, width=32), BV(2, width=32)), BVZero(32)), BVULE(BVURem(BV(5, width=32), BV(2, width=32)), BVOne(32))), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((((1_32 + (- 1_32)) << 1_32) >> 1_32) = 1_32)", expr=Equals( BVLShr(BVLShl(BVAdd(BVOne(32), BVNeg(BVOne(32))), 1), 1), BVOne(32)), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BV), Example(hr="((1_32 - 1_32) = 0_32)", expr=Equals(BVSub(BVOne(32), BVOne(32)), BVZero(32)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), # Rotations Example(hr="(((1_32 ROL 1) ROR 1) = 1_32)", expr=Equals(BVRor(BVRol(BVOne(32), 1), 1), BVOne(32)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), # Extensions Example(hr="((0_5 ZEXT 11) = (0_1 SEXT 15))", expr=Equals(BVZExt(BVZero(5), 11), BVSExt(BVZero(1), 15)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2 - bv2) = 0_16)", expr=Equals(BVSub(bv16, bv16), BVZero(16)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2 - bv2)[0:7] = bv1)", expr=Equals(BVExtract(BVSub(bv16, bv16), 0, 7), bv8), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2[0:7] bvcomp bv1) = 1_1)", expr=Equals(BVComp(BVExtract(bv16, 0, 7), bv8), BVOne(1)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2 bvcomp bv2) = 0_1)", expr=Equals(BVComp(bv16, bv16), BVZero(1)), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BV), Example(hr="(bv2 s< bv2)", expr=BVSLT(bv16, bv16), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BV), Example(hr="(bv2 s< 0_16)", expr=BVSLT(bv16, BVZero(16)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2 s< 0_16) | (0_16 s<= bv2))", expr=Or(BVSGT(BVZero(16), bv16), BVSGE(bv16, BVZero(16))), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="(bv2 u< bv2)", expr=BVULT(bv16, bv16), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BV), Example(hr="(bv2 u< 0_16)", expr=BVULT(bv16, BVZero(16)), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BV), Example(hr="((bv2 | 0_16) = bv2)", expr=Equals(BVOr(bv16, BVZero(16)), bv16), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2 & 0_16) = 0_16)", expr=Equals(BVAnd(bv16, BVZero(16)), BVZero(16)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((0_16 s< bv2) & ((bv2 s/ 65535_16) s< 0_16))", expr=And(BVSLT(BVZero(16), bv16), BVSLT(BVSDiv(bv16, SBV(-1, 16)), BVZero(16))), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((0_16 s< bv2) & ((bv2 s% 1_16) s< 0_16))", expr=And(BVSLT(BVZero(16), bv16), BVSLT(BVSRem(bv16, BVOne(16)), BVZero(16))), is_valid=False, is_sat=False, logic=pysmt.logics.QF_BV), Example(hr="((bv2 u% 1_16) = 0_16)", expr=Equals(BVURem(bv16, BVOne(16)), BVZero(16)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2 s% 1_16) = 0_16)", expr=Equals(BVSRem(bv16, BVOne(16)), BVZero(16)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2 s% (- 1_16)) = 0_16)", expr=Equals(BVSRem(bv16, BVNeg(BVOne(16))), BVZero(16)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((bv2 a>> 0_16) = bv2)", expr=Equals(BVAShr(bv16, BVZero(16)), bv16), is_valid=True, is_sat=True, logic=pysmt.logics.QF_BV), Example(hr="((0_16 s<= bv2) & ((bv2 a>> 1_16) = (bv2 >> 1_16)))", expr=And( BVSLE(BVZero(16), bv16), Equals(BVAShr(bv16, BVOne(16)), BVLShr(bv16, BVOne(16)))), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BV), # # Quantification # Example(hr="(forall y . (x -> y))", expr=ForAll([y], Implies(x, y)), is_valid=False, is_sat=True, logic=pysmt.logics.BOOL), Example(hr="(forall p, q . ((p + q) = 0))", expr=ForAll([p, q], Equals(Plus(p, q), Int(0))), is_valid=False, is_sat=False, logic=pysmt.logics.LIA), Example( hr="(forall r, s . (((0.0 < r) & (0.0 < s)) -> ((r - s) < r)))", expr=ForAll([r, s], Implies(And(GT(r, Real(0)), GT(s, Real(0))), (LT(Minus(r, s), r)))), is_valid=True, is_sat=True, logic=pysmt.logics.LRA), Example(hr="(exists x, y . (x -> y))", expr=Exists([x, y], Implies(x, y)), is_valid=True, is_sat=True, logic=pysmt.logics.BOOL), Example(hr="(exists p, q . ((p + q) = 0))", expr=Exists([p, q], Equals(Plus(p, q), Int(0))), is_valid=True, is_sat=True, logic=pysmt.logics.LIA), Example(hr="(exists r . (forall s . (r < (r - s))))", expr=Exists([r], ForAll([s], GT(Minus(r, s), r))), is_valid=False, is_sat=False, logic=pysmt.logics.LRA), Example(hr="(forall r . (exists s . (r < (r - s))))", expr=ForAll([r], Exists([s], GT(Minus(r, s), r))), is_valid=True, is_sat=True, logic=pysmt.logics.LRA), Example(hr="(x & (forall r . ((r + s) = 5.0)))", expr=And(x, ForAll([r], Equals(Plus(r, s), Real(5)))), is_valid=False, is_sat=False, logic=pysmt.logics.LRA), Example(hr="(exists x . ((x <-> (5.0 < s)) & (s < 3.0)))", expr=Exists([x], (And(Iff(x, GT(s, Real(5))), LT(s, Real(3))))), is_valid=False, is_sat=True, logic=pysmt.logics.LRA), # # UFLIRA # Example(hr="((p < ih(r, q)) & (x -> y))", expr=And(GT(Function(ih, (r, q)), p), Implies(x, y)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_UFLIRA), Example( hr= "(((p - 3) = q) -> ((p < ih(r, (q + 3))) | (ih(r, p) <= p)))", expr=Implies( Equals(Minus(p, Int(3)), q), Or(GT(Function(ih, (r, Plus(q, Int(3)))), p), LE(Function(ih, (r, p)), p))), is_valid=True, is_sat=True, logic=pysmt.logics.QF_UFLIRA), Example( hr= "(((ToReal((p - 3)) = r) & (ToReal(q) = r)) -> ((p < ih(ToReal((p - 3)), (q + 3))) | (ih(r, p) <= p)))", expr=Implies( And(Equals(ToReal(Minus(p, Int(3))), r), Equals(ToReal(q), r)), Or( GT( Function( ih, (ToReal(Minus(p, Int(3))), Plus(q, Int(3)))), p), LE(Function(ih, (r, p)), p))), is_valid=True, is_sat=True, logic=pysmt.logics.QF_UFLIRA), Example( hr= "(! (((ToReal((p - 3)) = r) & (ToReal(q) = r)) -> ((p < ih(ToReal((p - 3)), (q + 3))) | (ih(r, p) <= p))))", expr=Not( Implies( And(Equals(ToReal(Minus(p, Int(3))), r), Equals(ToReal(q), r)), Or( GT( Function(ih, (ToReal(Minus( p, Int(3))), Plus(q, Int(3)))), p), LE(Function(ih, (r, p)), p)))), is_valid=False, is_sat=False, logic=pysmt.logics.QF_UFLIRA), Example( hr= """("Did you know that any string works? #yolo" & "10" & "|#somesolverskeepthe||" & " ")""", expr=And(Symbol("Did you know that any string works? #yolo"), Symbol("10"), Symbol("|#somesolverskeepthe||"), Symbol(" ")), is_valid=False, is_sat=True, logic=pysmt.logics.QF_BOOL), # # Arrays # Example(hr="((q = 0) -> (aii[0 := 0] = aii[0 := q]))", expr=Implies( Equals(q, Int(0)), Equals(Store(aii, Int(0), Int(0)), Store(aii, Int(0), q))), is_valid=True, is_sat=True, logic=pysmt.logics.QF_ALIA), Example(hr="(aii[0 := 0][0] = 0)", expr=Equals(Select(Store(aii, Int(0), Int(0)), Int(0)), Int(0)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_ALIA), Example(hr="((Array{Int, Int}(0)[1 := 1] = aii) & (aii[1] = 0))", expr=And(Equals(Array(INT, Int(0), {Int(1): Int(1)}), aii), Equals(Select(aii, Int(1)), Int(0))), is_valid=False, is_sat=False, logic=pysmt.logics.get_logic_by_name("QF_ALIA*")), Example(hr="((Array{Int, Int}(0)[1 := 3] = aii) & (aii[1] = 3))", expr=And(Equals(Array(INT, Int(0), {Int(1): Int(3)}), aii), Equals(Select(aii, Int(1)), Int(3))), is_valid=False, is_sat=True, logic=pysmt.logics.get_logic_by_name("QF_ALIA*")), Example(hr="((Array{Real, Int}(10) = ari) & (ari[6/5] = 0))", expr=And(Equals(Array(REAL, Int(10)), ari), Equals(Select(ari, Real((6, 5))), Int(0))), is_valid=False, is_sat=False, logic=pysmt.logics.get_logic_by_name("QF_AUFBVLIRA*")), Example( hr= "((Array{Real, Int}(0)[1.0 := 10][2.0 := 20][3.0 := 30][4.0 := 40] = ari) & (! ((ari[0.0] = 0) & (ari[1.0] = 10) & (ari[2.0] = 20) & (ari[3.0] = 30) & (ari[4.0] = 40))))", expr=And( Equals( Array( REAL, Int(0), { Real(1): Int(10), Real(2): Int(20), Real(3): Int(30), Real(4): Int(40) }), ari), Not( And(Equals(Select(ari, Real(0)), Int(0)), Equals(Select(ari, Real(1)), Int(10)), Equals(Select(ari, Real(2)), Int(20)), Equals(Select(ari, Real(3)), Int(30)), Equals(Select(ari, Real(4)), Int(40))))), is_valid=False, is_sat=False, logic=pysmt.logics.get_logic_by_name("QF_AUFBVLIRA*")), Example( hr= "((Array{Real, Int}(0)[1.0 := 10][2.0 := 20][3.0 := 30][4.0 := 40][5.0 := 50] = ari) & (! ((ari[0.0] = 0) & (ari[1.0] = 10) & (ari[2.0] = 20) & (ari[3.0] = 30) & (ari[4.0] = 40) & (ari[5.0] = 50))))", expr=And( Equals( Array( REAL, Int(0), { Real(1): Int(10), Real(2): Int(20), Real(3): Int(30), Real(4): Int(40), Real(5): Int(50) }), ari), Not( And(Equals(Select(ari, Real(0)), Int(0)), Equals(Select(ari, Real(1)), Int(10)), Equals(Select(ari, Real(2)), Int(20)), Equals(Select(ari, Real(3)), Int(30)), Equals(Select(ari, Real(4)), Int(40)), Equals(Select(ari, Real(5)), Int(50))))), is_valid=False, is_sat=False, logic=pysmt.logics.get_logic_by_name("QF_AUFBVLIRA*")), Example( hr= "((a_arb_aii = Array{Array{Real, BV{8}}, Array{Int, Int}}(Array{Int, Int}(7))) -> (a_arb_aii[arb][42] = 7))", expr=Implies( Equals(nested_a, Array(ArrayType(REAL, BV8), Array(INT, Int(7)))), Equals(Select(Select(nested_a, arb), Int(42)), Int(7))), is_valid=True, is_sat=True, logic=pysmt.logics.get_logic_by_name("QF_AUFBVLIRA*")), Example(hr="(abb[bv1 := y_][bv1 := z_] = abb[bv1 := z_])", expr=Equals( Store(Store(abb, bv8, Symbol("y_", BV8)), bv8, Symbol("z_", BV8)), Store(abb, bv8, Symbol("z_", BV8))), is_valid=True, is_sat=True, logic=pysmt.logics.QF_ABV), Example(hr="((r / s) = (r * s))", expr=Equals(Div(r, s), Times(r, s)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_NRA), Example(hr="(2.0 = (r * r))", expr=Equals(Real(2), Times(r, r)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_NRA), Example(hr="((p ^ 2) = 0)", expr=Equals(Pow(p, Int(2)), Int(0)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_NIA), Example(hr="((r ^ 2.0) = 0.0)", expr=Equals(Pow(r, Real(2)), Real(0)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_NRA), Example(hr="((r * r * r) = 25.0)", expr=Equals(Times(r, r, r), Real(25)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_NRA), Example(hr="((5.0 * r * 5.0) = 25.0)", expr=Equals(Times(Real(5), r, Real(5)), Real(25)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LRA), Example(hr="((p * p * p) = 25)", expr=Equals(Times(p, p, p), Int(25)), is_valid=False, is_sat=False, logic=pysmt.logics.QF_NIA), Example(hr="((5 * p * 5) = 25)", expr=Equals(Times(Int(5), p, Int(5)), Int(25)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LIA), Example(hr="(((1 - 1) * p * 1) = 0)", expr=Equals(Times(Minus(Int(1), Int(1)), p, Int(1)), Int(0)), is_valid=True, is_sat=True, logic=pysmt.logics.QF_LIA), # Huge Fractions: Example( hr= "((r * 1606938044258990275541962092341162602522202993782792835301376/7) = -20480000000000000000000000.0)", expr=Equals(Times(r, Real(Fraction(2**200, 7))), Real(-200**11)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_LRA), Example(hr="(((r + 5.0 + s) * (s + 2.0 + r)) = 0.0)", expr=Equals( Times(Plus(r, Real(5), s), Plus(s, Real(2), r)), Real(0)), is_valid=False, is_sat=True, logic=pysmt.logics.QF_NRA), Example( hr= "(((p + 5 + q) * (p - (q - 5))) = ((p * p) + (10 * p) + 25 + (-1 * q * q)))", expr=Equals( Times(Plus(p, Int(5), q), Minus(p, Minus(q, Int(5)))), Plus(Times(p, p), Times(Int(10), p), Int(25), Times(Int(-1), q, q))), is_valid=True, is_sat=True, logic=pysmt.logics.QF_NIA), ] return result
def test_var_pow_constant(self): assert self.evaluate(Pow(self.x, Real(2))) == 100