Beispiel #1
0
 def test_parse_vector(self):
     a = DenseVector([])
     self.assertEqual(str(a), '[]')
     self.assertEqual(Vectors.parse(str(a)), a)
     a = DenseVector([3, 4, 6, 7])
     self.assertEqual(str(a), '[3.0,4.0,6.0,7.0]')
     self.assertEqual(Vectors.parse(str(a)), a)
     a = SparseVector(4, [], [])
     self.assertEqual(str(a), '(4,[],[])')
     self.assertEqual(SparseVector.parse(str(a)), a)
     a = SparseVector(4, [0, 2], [3, 4])
     self.assertEqual(str(a), '(4,[0,2],[3.0,4.0])')
     self.assertEqual(Vectors.parse(str(a)), a)
     a = SparseVector(10, [0, 1], [4, 5])
     self.assertEqual(SparseVector.parse(' (10, [0,1 ],[ 4.0,5.0] )'), a)
Beispiel #2
0
 def test_parse_vector(self):
     a = DenseVector([3, 4, 6, 7])
     self.assertTrue(str(a), "[3.0,4.0,6.0,7.0]")
     self.assertTrue(Vectors.parse(str(a)), a)
     a = SparseVector(4, [0, 2], [3, 4])
     self.assertTrue(str(a), "(4,[0,2],[3.0,4.0])")
     self.assertTrue(Vectors.parse(str(a)), a)
     a = SparseVector(10, [0, 1], [4, 5])
     self.assertTrue(SparseVector.parse(" (10, [0,1 ],[ 4.0,5.0] )"), a)
Beispiel #3
0
def cosineSimilarity(a, b):
    aMagnitude = math.sqrt(float(sum([aVal**2 for aVal in a.values])))
    bMagnitude = math.sqrt(float(sum([bVal**2 for bVal in b.values])))
    a2 = SparseVector.parse(str(a))
    resultNumerator = a2.dot(b)
    resultDenominator = aMagnitude * bMagnitude
    if resultDenominator == 0:
        return 0
    return resultNumerator / resultDenominator
Beispiel #4
0
def cosine_pre_process(line):
    length_matches = len(line[1])
    i = 0
    j = 0
    s1 = SparseVector(1, [0], [1])
    s2 = SparseVector(1, [0], [1])
    for i in xrange(length_matches - 1):
        j = i

        while (j < length_matches - 1):
            j = j + 1
            sf = s1.parse(line[1][i][1])
            ss = (s2.parse(line[1][j][1]))
            dotp = sf.dot(ss)
            rss = np.sqrt(sum(np.square(sf.values))) * np.sqrt(
                sum(np.square(ss.values)))
            if dotp / rss > .60:

                if line[1][i][0] < line[1][j][0]:
                    yield line[1][i][0], line[1][j][0]
                else:
                    yield line[1][j][0], line[1][i][0]
Beispiel #5
0
    def _parse_to_libsvm(self, param):

        index_l = []
        value_l = []

        param_l = param.split(' ')
        param_len = str(len(param_l) * 2)

        for p in param_l:
            index_l.append(str(int(p.split(':')[0]) - 1))
            value_l.append(p.split(':')[1])

        index = ','.join(index_l)
        value = ','.join(value_l)

        parsed_str = '(' + param_len + ', [' + index + '],[' + value + '])'

        return SparseVector.parse(parsed_str)
def main():
    k_input_model = sys.argv[1] #read kmean model from this location
    w_input_model = sys.argv[2] #read word2vec model from this location
    input_file = sys.argv[3] #read input file

    conf = SparkConf().setAppName('Clustering')
    sc = SparkContext(conf=conf)
    assert sc.version >= '1.5.1'

    sqlContext = SQLContext(sc)

    '''sbaronia - load both kmean and Word2Vec model'''
    kmean_model = KMeansModel.load(sc,k_input_model)
    word2vec_model = Word2VecModel.load(sc,w_input_model)

    '''sbaronia - select fields from json and make data frame zipped with index'''
    review = sqlContext.read.json(input_file).select('reviewText','overall','reviewTime').cache()
    review_df = review.filter(review.reviewText != "").cache()

    rating_rdd = rdd_zip(review_df.map(lambda line: float(line.overall)).cache()).cache()
    rating_df = sqlContext.createDataFrame(rating_rdd, ['rating', 'index']).cache()

    year_rdd = rdd_zip(review_df.map(extract_year).cache()).cache()
    year_df = sqlContext.createDataFrame(year_rdd, ['year', 'index']).cache()

    clean_words_rdd = review_df.map(lambda review: clean_string_to_words(review.reviewText)).cache()
       
    clean_list = clean_words_rdd.collect()

    '''sbaronia - make a list of all words in our model'''
    keys = sqlContext.read.parquet(w_input_model+"/data")
    keys_list = keys.rdd.map(lambda line: line.word).collect()

    '''sbaronia - here we create one vector per review, where vector
    contains the number of times a cluster is assinged to a word in
    a review. We make a SparseVector compatible format'''
    features = []

    for i in range(len(clean_list)):
        histogram = [0] * 2000
        for word in clean_list[i]:
            if word in keys_list:
                vec = word2vec_model.transform(word)
                clust = kmean_model.predict(vec)
                if histogram[clust] > 0:
                    histogram[clust] = histogram[clust] + 1
                else:
                    histogram[clust] = 1
        features.append((2000,range(2000),histogram))

    '''sbaronia - create a normalized SparseVector rdd'''
    nor = Normalizer(1)
    features_rdd = rdd_zip(sc.parallelize(features) \
                             .map(lambda line: nor.transform(SparseVector.parse(line))) \
                             .cache()).cache()

    '''sbaronia - make a dataframe with rating, year and vector per review'''
    features_df = sqlContext.createDataFrame(features_rdd, ['feature', 'index']).cache()

    year_rating_df = rating_df.join(year_df, rating_df.index == year_df.index, 'outer').drop(rating_df.index).cache()
    featyearrate_df = features_df.join(year_rating_df, features_df.index == year_rating_df.index, 'inner') \
                                 .drop(features_df.index).cache()
    
    '''sbaronia - create training and testing data based on year'''
    train_rdd = featyearrate_df.filter(featyearrate_df.year < 2014) \
                            .select('rating','feature') \
                            .map(lambda line: (LabeledPoint(line.rating, line.feature))) \
                            .coalesce(1) \
                            .cache()
    
    test_rdd = featyearrate_df.filter(featyearrate_df.year == 2014) \
                           .select('rating','feature') \
                           .map(lambda line: (LabeledPoint(line.rating, line.feature))) \
                           .coalesce(1) \
                           .cache()

    '''sbaronia - find best step using validation and run LinearRegressionWithSGD 
    with that step and report final RMSE'''
    step_best_norm = validation(train_rdd)

    RMSE_norm = regression_and_error(train_rdd,test_rdd,step_best_norm)

    print("Final RMSE(Normalization) = " + str(RMSE_norm) + "  Best Step size = " + str(step_best_norm))
Beispiel #7
0
def to_labeledpoint(line):
    line_spl = line.split(' :: ')
    return LabeledPoint(line_spl[0], SparseVector.parse(line_spl[1]))
def normalized_labeledpoint(line,nor):
	line_spl = line.split(' :: ')
	return LabeledPoint(line_spl[0], nor.transform(SparseVector.parse(line_spl[1])))
Beispiel #9
0
# combined RDD is of [(4, ((2, 2.0), 3.4))] form
normalizedRatingRDD = combinedRDD.map(lambda (x, y):
                                      (x, (y[0][0], y[0][1] - y[1])))
sparseRatingRDD = normalizedRatingRDD.groupByKey().map(
    lambda (x, y): (x, Vectors.sparse(numUsers, y)))

## Step 5 - Perform Recommendation
for i in range(0, 10):
    ## 1) select a random movie, and associated rating vector

    randomMovieTuple = sparseRatingRDD.takeSample(
        False, 1)[0]  # tuple ( movieID, sparseVector )

    randMovieId = randomMovieTuple[0]  # extract movieId
    randMovieVector = SparseVector.parse(str(
        randomMovieTuple[1]))  # SparseVector associated with that movie

    # From this movie vector, we will randomly select a userId and set their rating to zero.
    # The idea would be to try to predict that rating and see how close we come to the actual value
    predVecValues = randMovieVector.values
    predVecIndices = randMovieVector.indices
    index = random.randint(0, len(predVecValues) - 1)
    predVecValues[index] = 0  # set rating to zero
    randUserId = predVecIndices[index]

    ## 2) compute cosine simularity with "randMovieVector" and each vector in RDD
    # result is a RDD of (cosSimValue, movieId)
    result = sparseRatingRDD.map(lambda v : (v[0], cosineSimilarity(v[1], randMovieVector)))\
              .map(lambda x: (x[1], x[0]))\
              .sortByKey(ascending=False)