Beispiel #1
0
def _manually_create_game():
    """Creates the game manually from the spiel building blocks."""
    game_type = pyspiel.GameType(
        "matching_pennies",
        "Matching Pennies",
        pyspiel.GameType.Dynamics.SIMULTANEOUS,
        pyspiel.GameType.ChanceMode.DETERMINISTIC,
        pyspiel.GameType.Information.ONE_SHOT,
        pyspiel.GameType.Utility.ZERO_SUM,
        pyspiel.GameType.RewardModel.TERMINAL,
        2,  # max num players
        2,  # min_num_players
        True,  # provides_information_state
        True,  # provides_information_state_tensor
        False,  # provides_observation
        False,  # provides_observation_tensor
        dict()  # parameter_specification
    )
    game = pyspiel.MatrixGame(
        game_type,
        {},  # game_parameters
        ["Heads", "Tails"],  # row_action_names
        ["Heads", "Tails"],  # col_action_names
        [[-1, 1], [1, -1]],  # row player utilities
        [[1, -1], [-1, 1]]  # col player utilities
    )
    return game
Beispiel #2
0
def iterated_dominance(game_or_payoffs, mode, tol=1e-7):
    """Reduces a strategy space using iterated dominance.

  See: http://www.smallparty.com/yoram/classes/principles/nash.pdf

  Args:
    game_or_payoffs: either a pyspiel matrix- or normal-form game, or a payoff
      tensor of dimension `num_players` + 1. First dimension is the player,
      followed by the actions of all players, e.g. a 3x3 game (2 players) has
      dimension [2,3,3].
    mode: DOMINANCE_STRICT, DOMINANCE_WEAK, or DOMINANCE_VERY_WEAK
    tol: tolerance

  Returns:
    A tuple (`reduced_game`, `live_actions`).
    * if `game_or_payoffs` is an instance of `pyspiel.MatrixGame`, so is
      `reduced_game`; otherwise `reduced_game` is a payoff tensor.
    * `live_actions` is a tuple of length `num_players`, where
      `live_actions[player]` is a boolean vector of shape `num_actions`;
       `live_actions[player][action]` is `True` if `action` wasn't dominated for
       `player`.
  """
    payoffs = game_payoffs_array(game_or_payoffs) if isinstance(
        game_or_payoffs,
        pyspiel.NormalFormGame) else np.asfarray(game_or_payoffs)
    live_actions = [
        np.ones(num_actions, np.bool) for num_actions in payoffs.shape[1:]
    ]
    progress = True
    while progress:
        progress = False
        # trying faster method first
        for method in ("pure", "mixed"):
            if progress:
                continue
            for player, live in enumerate(live_actions):
                if live.sum() == 1:
                    # one action is dominant
                    continue

                # discarding all dominated opponent actions
                payoffs_live = payoffs[player]
                for opponent in range(payoffs.shape[0]):
                    if opponent != player:
                        payoffs_live = payoffs_live.compress(
                            live_actions[opponent], opponent)

                # reshaping to (player_actions, joint_opponent_actions)
                payoffs_live = np.moveaxis(payoffs_live, player, 0)
                payoffs_live = payoffs_live.reshape(
                    (payoffs_live.shape[0], -1))

                for action in range(live.size):
                    if not live[action]:
                        continue
                    if method == "pure":
                        # mark all actions that `action` dominates
                        advantage = payoffs_live[action] - payoffs_live
                        dominated = _pure_dominated_from_advantages(
                            advantage, mode, tol)
                        dominated[action] = False
                        dominated &= live
                        if dominated.any():
                            progress = True
                            live &= ~dominated
                            if live.sum() == 1:
                                break
                    if method == "mixed":
                        # test if `action` is dominated by a mixed policy
                        mixture = is_dominated(live[:action].sum(),
                                               payoffs_live[live],
                                               0,
                                               mode,
                                               tol,
                                               return_mixture=True)
                        if mixture is None:
                            continue
                        # if it is, mark any other actions dominated by that policy
                        progress = True
                        advantage = mixture.dot(
                            payoffs_live[live]) - payoffs_live[live]
                        dominated = _pure_dominated_from_advantages(
                            advantage, mode, tol)
                        dominated[mixture > tol] = False
                        assert dominated[live[:action].sum()]
                        live.put(live.nonzero()[0], ~dominated)
                        if live.sum() == 1:
                            break

    for player, live in enumerate(live_actions):
        payoffs = payoffs.compress(live, player + 1)

    if isinstance(game_or_payoffs, pyspiel.MatrixGame):
        return pyspiel.MatrixGame(
            game_or_payoffs.get_type(), game_or_payoffs.get_parameters(), [
                game_or_payoffs.row_action_name(action)
                for action in live_actions[0].nonzero()[0]
            ], [
                game_or_payoffs.col_action_name(action)
                for action in live_actions[1].nonzero()[0]
            ], *payoffs), live_actions
    else:
        return payoffs, live_actions