Beispiel #1
0
 class ModelInput(Model.Config.ModelInput):
     tokens: TokenTensorizer.Config = TokenTensorizer.Config()
     word_labels: SlotLabelTensorizer.Config = SlotLabelTensorizer.Config(
         allow_unknown=True)
     doc_labels: LabelTensorizer.Config = LabelTensorizer.Config(
         allow_unknown=True)
     doc_weight: Optional[FloatTensorizer.Config] = None
     word_weight: Optional[FloatTensorizer.Config] = None
Beispiel #2
0
 class ModelInput(Model.Config.ModelInput):
     tokens: TokenTensorizer.Config = TokenTensorizer.Config()
     word_labels: SlotLabelTensorizer.Config = SlotLabelTensorizer.Config(
         allow_unknown=True)
     doc_labels: LabelTensorizer.Config = LabelTensorizer.Config(
         allow_unknown=True)
     doc_weight: FloatTensorizer.Config = FloatTensorizer.Config(
         column="doc_weight")
     word_weight: FloatTensorizer.Config = FloatTensorizer.Config(
         column="word_weight")
Beispiel #3
0
 class ModelInput(Model.Config.ModelInput):
     tokens: TokenTensorizer.Config = TokenTensorizer.Config()
     labels: SlotLabelTensorizer.Config = SlotLabelTensorizer.Config()
Beispiel #4
0
 class ByteModelInput(Model.Config.ModelInput):
     # We should support characters as well, but CharacterTokenTensorizer
     # does not support adding characters to vocab yet.
     token_bytes: ByteTokenTensorizer.Config = ByteTokenTensorizer.Config(
     )
     labels: SlotLabelTensorizer.Config = SlotLabelTensorizer.Config()