Beispiel #1
0
def topo_sort_dfs(g:Graph):
    #找出有入度的节点
    in_nodes = set()
    for v in g:
        for nbr in v.getConnections():
           in_nodes.add(nbr.id)
    #找出起始节点
    start_nodes = []
    for node in g.getVertices():
        if node not in list(in_nodes):
            start_nodes.append(node)
    '''
    对递归版dfs做点改变
    '''
    def dfs(node:Vertex,path=''):
        if not node.getConnections():
            paths.append(path + node.id)
            return
        for nbr in node.getConnections():
            dfs(nbr,path + node.id)
        return

    paths = []
    for node in start_nodes:
        dfs(g.getVertex(node))

    #打印结果
    for str in paths:
        for char in str:
            print(char,end=' ')
        print()
Beispiel #2
0
def topo_sort_bfs(g:Graph):
    #建立入度表
    in_degrees = {}
    for v in g:
        if v.id not in in_degrees:
            in_degrees[v.id] = 0
        for nbr in v.getConnections():
            in_degrees[nbr.id] = in_degrees.get(nbr.id,0) + 1
    # print(in_degrees)

    #找起始节点
    queue = []
    for key,value in in_degrees.items():
        if value == 0:
            queue.append(key)
    #拓扑排序
    tuopu = []
    while queue:
        cur_id = queue.pop(0)
        tuopu.append(cur_id)
        for nbr in g.getVertex(cur_id).getConnections():
            in_degrees[nbr.id] = in_degrees.get(nbr.id) - 1
            if in_degrees[nbr.id] == 0:
                queue.append(nbr.id)
    #返回结果
    return tuopu if len(tuopu) == len(g.getVertices()) else []
Beispiel #3
0
def createBoard(size=8):
    game = Graph()
    for row in range(size):
        for col in range(size):
            ID = (row * size) + col
            pos = moves(row, col, size)
            for i in pos:
                nid = (i[0] * size) + i[1]
                game.addEdge(ID, nid)
    return game
Beispiel #4
0
    def generate_connected_weighted_undirected_graph(number_of_vertices: int,
                                                     maximum_edge_weight: int,
                                                     edges_per_vertex: int):
        graph = Graph()

        indexes = [index for index in range(number_of_vertices)]

        for index in indexes:
            for neighbor_vertex_index in choices(indexes, k=randrange(1, min(number_of_vertices, edges_per_vertex))):
                graph.addEdge(index, neighbor_vertex_index, randrange(1, maximum_edge_weight))
                graph.addEdge(neighbor_vertex_index, index, randrange(1, maximum_edge_weight))

        return graph
def knightGraph( size ):
    """在每个格子上 knightGraph 函数调用 genLegalMoves 辅助函数来创建一个当 前这个格子上骑士所有合法移动的列表。
    所有的合法移动都被转换为图上的边。"""
    knightGrh = Graph()
    for row in range(size):
        for col in range(size):
            location = posToNodeId( row, col, size )
            legalList = genLegalMoves( row, col, size)
            for legal in legalList:
                legal_loc = posToNodeId(legal[0], legal[1], size)
                knightGrh.addEdge(location, legal_loc)

    return knightGrh
Beispiel #6
0
def buildGraph(wordFile):
    
    d = {}
    g = Graph()
    wfile = open(wordFile,'r')
    
    # create buckets of words that differ by one letter
    for line in wfile:
        word = line[:-1]
        for i in range(len(word)):
            bucket = word[:i] + '_' + word[i+1:]
            if bucket in d:
                d[bucket].append(word)
            else:
                d[bucket] = [word]
    
    # add vertices and edges for words in the same bucket
    for bucket in d.keys():
        for word1 in d[bucket]:
            for word2 in d[bucket]:
                if word1 != word2:
                    g.addEdge(word1,word2)
    return g
Beispiel #7
0
def buildGraph(wordFile):

    d = {}
    g = Graph()
    wfile = open(wordFile, 'r')

    # create buckets of words that differ by one letter
    for line in wfile:
        word = line[:-1]
        for i in range(len(word)):
            bucket = word[:i] + '_' + word[i + 1:]
            if bucket in d:
                d[bucket].append(word)
            else:
                d[bucket] = [word]

    # add vertices and edges for words in the same bucket
    for bucket in d.keys():
        for word1 in d[bucket]:
            for word2 in d[bucket]:
                if word1 != word2:
                    g.addEdge(word1, word2)
    return g
    def test_model(self):
        number_of_vertices, maximum_edge_weight, edges_per_vertex = (10, 10, 3)
        # graph = RandomGraphGenerator.generate_connected_weighted_undirected_graph(number_of_vertices,
        #                                                                     maximum_edge_weight,
        #                                                                     edges_per_vertex)

        graph = Graph()
        graph.addEdge(0, 1, 1)
        graph.addEdge(1, 0, 1)
        graph.addEdge(0, 2, 2)
        graph.addEdge(2, 0, 2)

        thorup = ThorupModel(graph)

        thorup.construct_minimum_spanning_tree(KruskalMstAlgorithm)
        thorup.construct_other_data_structures()
        result = thorup.find_shortest_paths(0)
        self.assertEquals([0, 1, 2], result)
    def spawn_tree(source_graph: Graph) -> Graph:
        union_find_nodes = [
            UnionFindNode(i) for i in range(source_graph.numVertices)
        ]
        sorted_edges = KruskalMstAlgorithm.sorts_edges_by_weights(source_graph)
        msb_minimum_spanning_tree = Graph()

        while sorted_edges:  # msb_minimum_spanning_tree.numVertices < ((source_graph.numVertices - 1) * 2):
            edge = sorted_edges.pop(0)

            source_id = UnionFindStructureTarjan\
                .find(union_find_nodes[edge.source]).item
            target_id = UnionFindStructureTarjan\
                .find(union_find_nodes[edge.target]).item

            if source_id != target_id:
                msb_minimum_spanning_tree.addEdge(source_id, target_id,
                                                  edge.weight)
                msb_minimum_spanning_tree.addEdge(target_id, source_id,
                                                  edge.weight)
                UnionFindStructureTarjan.union(union_find_nodes[source_id],
                                               union_find_nodes[target_id])

        return msb_minimum_spanning_tree
Beispiel #10
0
#!/usr/bin/env python

import argparse
import re
import subprocess, sys, os
from pythonds import Queue, Graph, Vertex

vertices = []
consumes = Graph()
is_consumed = Graph()
blacklisted_modules_id = []

class MyVertex(Vertex):
    WHITE = 0
    GRAY = 1
    BLACK = 2
    def __init__(self,num):
        self.color = MyVertex.WHITE
        super().__init__(num)

def bfs(graph, start, debug=False):
      """
      Breadth First Search (BFS)
       Given a node in a graph, BFS will find all nodes connected to this
      node. The distance between nodes is measured in HOPS. It will find
      all nodes at distance 'k' before finding any nodes at a further
      distance. It will return the full list of connected nodes.
       PseudoCode:
       BFS(G,s)
       for each vertex u in V[G] - {s} do
        state[u] = WHITE
Beispiel #11
0
            else:
                d[bucket] = [word]
    
    # add vertices and edges for words in the same bucket
    for bucket in d.keys():
        for word1 in d[bucket]:
            for word2 in d[bucket]:
                if word1 != word2:
                    g.addEdge(word1,word2)
    return g

line = "pool  cool fool foil fail "

word = line[:-1]
d = {}
g = Graph()

for i in range(len(word)):
            bucket = word[:i] + '_' + word[i+1:]
            if bucket in d:
                d[bucket].append(word)
            else:
                d[bucket] = [word]

for bucket in d.keys():
        for word1 in d[bucket]:
            for word2 in d[bucket]:
                if word1 != word2:
                    g.addEdge(word1,word2)

Beispiel #12
0
    #  O(V)
    pq.buildHeap([(v.getDistance(), v) for v in G])

    while not pq.isEmpty():
        closest = pq.delMin()
        for n in closest.getConnections():
            newCost = closest.getWeight(n)
            if n in pq and newCost < n.getDistance():
                n.setPred(closest)
                n.setDistance(newCost)
                pq.decreaseKey(n, newCost)

    return G


g = Graph()
g.addVertex(0)
g.addVertex(1)
g.addVertex(2)
g.addVertex(3)

g.addEdge(0, 1, 10)
g.addEdge(1, 0, 10)
g.addEdge(0, 2, 6)
g.addEdge(2, 0, 6)
g.addEdge(0, 3, 5)
g.addEdge(3, 0, 5)
g.addEdge(1, 3, 15)
g.addEdge(3, 1, 15)
g.addEdge(2, 3, 4)
g.addEdge(3, 2, 4)
Beispiel #13
0
    # O(V)
    pq.buildHeap([(v.getDistance(), v) for v in g])

    while not pq.isEmpty():
        # O(logV) * O(V) = O(V*logV)
        closest = pq.delMin()
        for n in closest.getConnections():
            new_distance = closest.getDistance() + closest.getWeight(n)
            if new_distance < n.getDistance():
                n.setDistance(new_distance)
                n.setPred(closest)
                # O(E*logV)
                pq.decreaseKey(n, new_distance)


g = Graph()
g.addVertex(0)
g.addVertex(1)
g.addVertex(2)
g.addVertex(3)

g.addEdge(0, 1, 10)
g.addEdge(0, 2, 6)
g.addEdge(0, 3, 5)
g.addEdge(1, 3, 15)
g.addEdge(2, 3, 4)
d = dijsktras(g, g.getVertex(0))
print('Distances from {}: '.format(0), end="\n")
print("********************")
for v in d:
    print('Distance to {}: {}'.format(v.getId(), d[v]))
Beispiel #14
0

def dfs_modified(g, start, visited, s):
    visited.append(start)

    for v in g.getVertex(start).getConnections():
        if v.id not in visited:
            dfs_modified(g, v.id, visited, s)
    s.append(start)


def topological_sort(g, n):
    visited = []
    s = []
    for i in range(n):
        if i not in visited:
            dfs_modified(g, i, visited, s)
    print(s[::-1])


g = Graph()
g.addEdge(5, 2)
g.addEdge(5, 0)
g.addEdge(4, 0)
g.addEdge(4, 1)
g.addEdge(2, 3)
g.addEdge(3, 1)

topological_sort(g, 6)

Beispiel #15
0
        distance[v][v] = 0
        for n in v.getConnections():
            distance[v][n] = v.getWeight(n)

    for k in g:
        for i in g:
            for j in g:
                distance[i][j] = min(distance[i][j],
                                     distance[i][k] + distance[k][j])

    print_shortest_distance(distance, g)


def print_shortest_distance(d, g):
    for i in d:
        for j in g:
            print(f"{i.getId()} --> {j.getId()}   {d[i][j]}")


g = Graph()
g.addVertex(0)
g.addVertex(1)
g.addVertex(2)
g.addVertex(3)

g.addEdge(0, 1, 5)
g.addEdge(0, 3, 10)
g.addEdge(1, 2, 3)
g.addEdge(2, 3, 1)

floyd_warshall(g)
Beispiel #16
0
from pythonds import Graph, Vertex


def dfs(g, start, visited=None):
    if not visited:
        visited = []
    visited.append(start)

    for v in g.getVertex(start).getConnections():
        if v.id not in visited:
            dfs(g, v.id, visited)
    return visited


g = Graph()
for i in range(1, 7):
    g.addVertex(i)

g.addEdge(1,2)
g.addEdge(1,3)
g.addEdge(2,4)
g.addEdge(2,5)
g.addEdge(3,5)
g.addEdge(3,6)
a = dfs(g, 1)
print(a)
Beispiel #17
0
from pythonds import Graph
import timeit
from algorithms import Prims
from Stats import Display

graph = Graph()
Display.creategraph(Display, graph)
v = graph.getVertex(1)
testing = 10
exe = 0
exe2 = 0

# Prim 1
for i in range(testing):
    start_time = timeit.default_timer()
    Prims.prim1(Prims, graph, v)
    time = timeit.default_timer() - start_time
    exe += time
average = exe / testing
print("Prim 1 took:", average, 'on average')
'''

# Prim 2
for x in range(testing):
    start_time = timeit.default_timer()
    Prims.prim2(Prims, graph, v)
    time = timeit.default_timer() - start_time
    exe2 += time
average = exe2 / testing
print("Prim 2 took:", average, 'on average')
Beispiel #18
0
            else:
                d[bucket] = [word]

    # add vertices and edges for words in the same bucket
    for bucket in d.keys():
        for word1 in d[bucket]:
            for word2 in d[bucket]:
                if word1 != word2:
                    g.addEdge(word1, word2)
    return g


line = "pool  cool fool foil fail "

word = line[:-1]
d = {}
g = Graph()

for i in range(len(word)):
    bucket = word[:i] + '_' + word[i + 1:]
    if bucket in d:
        d[bucket].append(word)
    else:
        d[bucket] = [word]

for bucket in d.keys():
    for word1 in d[bucket]:
        for word2 in d[bucket]:
            if word1 != word2:
                g.addEdge(word1, word2)
Beispiel #19
0
        if t not in self.vertList:
            self.addVertex(t)
        self.vertList[f].addNeighbor(self.vertList[t], cost)

    def getVertices(self):
        return self.vertList.keys()

    def __contains__(self, key):
        return key in self.vertList

    def __iter__(self):
        return iter(self.vertList.values())


#测试
g = Graph()
for i in range(4):
    g.addVertex(i)
g.addEdge(0, 1, 5)
g.addEdge(0, 2, 4)
g.addEdge(1, 2, 3)
g.addEdge(1, 3, 3)
g.addEdge(2, 4, 1)
g.addEdge(2, 5, 2)

# for v in g:
#     print(v)
# print(g.getVertex(1))
'''
2.图的遍历(非强连通图也可以)
    2.1 BFS
Beispiel #20
0
            if newDist < nextV.getDistance():
                nextV.setDistance(newDist)
                nextV.setPred(curV)
                pq.decreaseKey(nextV,newDist)   #这个方法应该是内部调用了percUp(),有调整堆的味道

#初始化图
v = ['u','v','x','w','y','z']
#无向图一定要这样创建吗?
edge = [('u','v',2),('u','w',5),('u','x',1),
        ('v','u',2),('v','x',2),('v','w',3),
        ('x','u',1),('x','v',2),('x','w',3),('x','y',1),
        ('w','v',2),('w','u',5),('w','x',3),('w','y',1),('w','z',5),
        ('y','x',1),('y','w',1),('y','z',1),
        ('z','w',5),('z','y',1)]

g = Graph()
g.addVertex(v for v in v)
for cur,nbr,weight in edge:
    g.addEdge(cur, nbr, weight)
# print(g.getVertex('w'))

# #测试
# dijkstra(g,g.getVertex('u'))
# for v in v[1:]:
#     print('u到%s的最短距离:%i' % (v,g.getVertex(v).getDistance()))


'''
4.最小生成树
注:同Dijkstra算法很相似
'''