def get_radar_variables_Exponential_fwScattering(N0=None,
                                                 Lambda=None,
                                                 D_max=None):
    scatterer.psd = psd.ExponentialPSD(N0=N0, Lambda=Lambda, D_max=D_max)
    return [
        radar.Ai(scatterer, h_pol=True),
        radar.Ai(scatterer, h_pol=False),
        radar.Kdp(scatterer)
    ]
Beispiel #2
0
    def test_integrated_x_sca(self):
        """Test Rayleigh scattering cross section integrated over sizes.
        """

        m = complex(3.0, 0.5)
        K = (m**2 - 1) / (m**2 + 2)
        N0 = 10
        Lambda = 1e4

        sca = Scatterer(wavelength=1, m=m)
        sca.psd_integrator = psd.PSDIntegrator()
        sca.psd = psd.ExponentialPSD(N0=N0, Lambda=Lambda)
        sca.psd.D_max = 0.002
        sca.psd_integrator.D_max = sca.psd.D_max
        # 256 is quite low, but we want to run the test reasonably fast
        sca.psd_integrator.num_points = 256
        sca.psd_integrator.init_scatter_table(sca, angular_integration=True)

        # This size-integrated scattering cross section has an analytical value.
        # Check that we can reproduce it.
        sca_xsect_ref = 480 * N0 * np.pi**5 * abs(K)**2 / Lambda**7
        sca_xsect = scatter.sca_xsect(sca)
        test_less(self, abs(1 - sca_xsect / sca_xsect_ref), 1e-3)
def get_radar_variables_Exponential(N0=None, Lambda=None, D_max=None):
    scatterer.psd = psd.ExponentialPSD(N0=N0, Lambda=Lambda, D_max=D_max)
    return [
        10. * np.log10(radar.refl(scatterer)),
        10. * np.log10(radar.Zdr(scatterer))
    ]
Beispiel #4
0
fig, (ax1,ax2,ax3) = plt.subplots(3,1)#,sharex=True)

Zdr_array = []
Z_array = []
for wl in wavelengths:
    ref_func = m_rho_func(wl)
    for lamb in lambdas:
        scatterer = tmatrix.Scatterer(wavelength=wl,
                              axis_ratio=1.0/ar,
                              Kw_sqr=tmatrix_aux.K_w_sqr[wl])
        scatterer.psd_integrator = psd.PSDIntegrator()
        scatterer.psd_integrator.m_func = ref_func
        scatterer.psd_integrator.geometries=[tmatrix_aux.geom_horiz_back,tmatrix_aux.geom_horiz_forw,]
        scatterer.set_geometry(tmatrix_aux.geom_horiz_back)
        scatterer.psd = psd.ExponentialPSD(N0=1.0,Lambda=lamb,D_max=20.0)
        scatterer.psd_integrator.D_max = 20.0
        scatterer.psd_integrator.init_scatter_table(scatterer)
        Zdr = 10.0*np.log10(radar.Zdr(scatterer))
        scatterer.set_geometry(tmatrix_aux.geom_horiz_forw)
        W = np.pi*1e3*(1.0/lamb)**4
        Kdp = 1.0e6*radar.Kdp(scatterer)/W
        Zdr_array.append(Zdr)
        Z_array.append(Kdp)
    ax1.plot(D0s,Zdr_array,label=wl)
    ax2.plot(D0s,Z_array,label=wl)
    Zdr_array = []
    Z_array = []
ax1.legend()
ax1.grid()
ax2.grid()
def get_radar_variables_Exponential(N0=None,Lambda=None,D_max=None):
    scatterer.psd = psd.ExponentialPSD(N0=N0, Lambda=Lambda, D_max=D_max)
    return [radar.refl(scatterer), radar.Zdr(scatterer), radar.ldr(scatterer)]