Beispiel #1
0
    def distanceOfShifts(self, oldAlignmentList):
        """
        distanceOfShifts: Determines distance of current shifts from previous shifts 
        @param oldAlignmentList: 
        """
        from pytom.tools.maths import euclidianDistance, listMean, listStd

        distance = []
        numberResults = len(self)

        oldListXML = oldAlignmentList.toXML()

        for i in xrange(0, numberResults):

            newResult = self[i]
            particle = newResult.getParticle()

            try:
                oldResultXML = oldListXML.xpath(
                    '/AlignmentList/Result/Particle[@Filename="' +
                    particle.getFilename() + '"]/..')
                oldResult = MaximisationResult()
                oldResult.fromXML(oldResultXML[0])
            except:
                numberResults = numberResults - 1
                continue

            newShift = newResult.getShift()
            oldShift = oldResult.getShift()

            d = euclidianDistance(newShift.toVector(), oldShift.toVector())

            distance.append(d)

        return [listMean(distance), listStd(distance)]
Beispiel #2
0
def vector2euler(vec, reference_vec=[0,0,1]):
    """Transform a vector to an Euler angle representation.
    Or: find the Euler angle to rotate the reference vector to the given vector.
    Note there are infinite possible ways to do this, since the inplane rotation is not specified.
    """
    from pytom.tools.maths import euclidianDistance
    if(euclidianDistance(vec, [0,0,0]) == 0):
        raise RuntimeError("Vector length should be bigger than 0!")
    
    if(euclidianDistance(vec, reference_vec) == 0):
        from pytom.basic.structures import Rotation
        return Rotation(0,0,0)
    
    import numpy as np
    vec = vec/np.linalg.norm(vec)
    axis = np.cross(reference_vec, vec)
    angle = np.math.acos(np.dot(vec, reference_vec))
    mat = axisAngleToMat(axis, angle, True)
    rotation = matToZXZ(mat)
    
    return rotation
Beispiel #3
0
def frm_constrained_align(vf,
                          wf,
                          vg,
                          wg,
                          b,
                          max_freq,
                          peak_offset=None,
                          mask=None,
                          constraint=None,
                          weights=None,
                          position=None,
                          num_seeds=5,
                          pytom_volume=None):
    """Find the best alignment (translation & rotation) of volume vg (reference) to match vf.
    For details, please check the paper.

    Parameters
    ----------
    vf: Volume Nr. 1
        pytom_volume.vol

    wf: Mask of vf in Fourier space.
        pytom.basic.structures.Wedge. If none, no missing wedge.

    vg: Volume Nr. 2 / Reference
        pytom_volume.vol

    wg: Mask of vg in Fourier space.
        pytom.basic.structures.Wedge. If none, no missing wedge.

    b: Bandwidth range of spherical harmonics.
       None -> [4, 64]
       List -> [b_min, b_max]
       Integer -> [b, b]

    max_freq: Maximal frequency involved in calculation.
              Integer.

    peak_offset: The maximal offset which allows the peak of the score to be.
                 Or simply speaking, the maximal distance allowed to shift vg to match vf.
                 This parameter is needed to prevent shifting the reference volume out of the frame.
                 pytom_volume.vol / Integer. By default is half of the volume radius.

    mask: Mask volume for vg in real space.
          pytom_volume.vol

    constraint: Angular constraint
                sh_alignment.constrained_frm.AngularConstraint

    weights: Obsolete.

    position: If the translation is already known or not. If provided, no translational search will be conducted.
              List: [x,y,z], default None.

    num_seeds: Number of threads for the expectation maximization procedure. The more the better, yet slower.
               Integer, default is 5.

    Returns
    -------
    (The best translation and rotation (Euler angle, ZXZ convention [Phi, Psi, Theta]) to transform vg to match vf.
    (best_translation, best_rotation, correlation_score)
    """
    from pytom_volume import vol, rotateSpline, peak
    from pytom.basic.transformations import shift
    from pytom.basic.correlation import FLCF
    from pytom.basic.filter import lowpassFilter
    from pytom.basic.structures import Mask, SingleTiltWedge
    from pytom_volume import initSphere
    from pytom_numpy import vol2npy

    if vf.sizeX() != vg.sizeX() or vf.sizeY() != vg.sizeY() or vf.sizeZ(
    ) != vg.sizeZ():
        raise RuntimeError('Two volumes must have the same size!')

    if wf is None:
        wf = SingleTiltWedge(0)
    if wg is None:
        wg = SingleTiltWedge(0)

    if peak_offset is None:
        peak_offset = vol(vf.sizeX(), vf.sizeY(), vf.sizeZ())
        initSphere(peak_offset,
                   vf.sizeX() / 4, 0, 0,
                   vf.sizeX() / 2,
                   vf.sizeY() / 2,
                   vf.sizeZ() / 2)
    elif peak_offset.__class__ == int:
        peak_radius = peak_offset
        peak_offset = vol(vf.sizeX(), vf.sizeY(), vf.sizeZ())
        initSphere(peak_offset, peak_radius, 0, 0,
                   vf.sizeX() / 2,
                   vf.sizeY() / 2,
                   vf.sizeZ() / 2)
    elif peak_offset.__class__ == vol:
        pass
    else:
        raise RuntimeError('Peak offset is given wrong!')

    # cut out the outer part which normally contains nonsense
    m = vol(vf.sizeX(), vf.sizeY(), vf.sizeZ())
    initSphere(m,
               vf.sizeX() / 2, 0, 0,
               vf.sizeX() / 2,
               vf.sizeY() / 2,
               vf.sizeZ() / 2)
    vf = vf * m
    vg = vg * m
    if mask is None:
        mask = m
    else:
        vg = vg * mask

    if position is None:  # if position is not given, we have to find it ourself
        # first roughtly determine the orientation (only according to the energy info)
        # get multiple candidate orientations
        numerator, denominator1, denominator2 = frm_correlate(
            vf, wf, vg, wg, b, max_freq, weights, True, None, None, False)
        score = numerator / (denominator1 * denominator2)**0.5
        res = frm_find_topn_constrained_angles_interp(
            score, num_seeds,
            get_adaptive_bw(max_freq, b) / 16., constraint)
    else:
        # the position is given by the user
        vf2 = shift(vf, -position[0] + vf.sizeX() / 2,
                    -position[1] + vf.sizeY() / 2,
                    -position[2] + vf.sizeZ() / 2, 'fourier')
        score = frm_correlate(vf2, wf, vg, wg, b, max_freq, weights, ps=False)
        orientation, max_value = frm_find_best_constrained_angle_interp(
            score, constraint=constraint)

        return position, orientation, max_value

    # iteratively refine the position & orientation
    from pytom.tools.maths import euclidianDistance
    max_iter = 10  # maximal number of iterations
    mask2 = vol(mask.sizeX(), mask.sizeY(),
                mask.sizeZ())  # store the rotated mask
    vg2 = vol(vg.sizeX(), vg.sizeY(), vg.sizeZ())
    lowpass_vf = lowpassFilter(vf, max_freq, max_freq / 10.)[0]

    max_position = None
    max_orientation = None
    max_value = -1.0
    for i in xrange(num_seeds):
        old_pos = [-1, -1, -1]
        lm_pos = [-1, -1, -1]
        lm_ang = None
        lm_value = -1.0
        orientation = res[i][0]  # initial orientation
        for j in xrange(max_iter):
            rotateSpline(vg, vg2, orientation[0], orientation[1],
                         orientation[2])  # first rotate
            rotateSpline(mask, mask2, orientation[0], orientation[1],
                         orientation[2])  # rotate the mask as well
            vg2 = wf.apply(vg2)  # then apply the wedge
            vg2 = lowpassFilter(vg2, max_freq, max_freq / 10.)[0]
            score = FLCF(lowpass_vf, vg2, mask2)  # find the position
            pos = peak(score, peak_offset)
            pos, val = find_subpixel_peak_position(vol2npy(score), pos)
            if val > lm_value:
                lm_pos = pos
                lm_ang = orientation
                lm_value = val

            if euclidianDistance(lm_pos, old_pos) <= 1.0:
                # terminate this thread
                if lm_value > max_value:
                    max_position = lm_pos
                    max_orientation = lm_ang
                    max_value = lm_value

                break
            else:
                old_pos = lm_pos

            # here we shift the target, not the reference
            # if you dont want the shift to change the energy landscape, use fourier shift
            vf2 = shift(vf, -lm_pos[0] + vf.sizeX() / 2,
                        -lm_pos[1] + vf.sizeY() / 2,
                        -lm_pos[2] + vf.sizeZ() / 2, 'fourier')
            score = frm_correlate(vf2, wf, vg, wg, b, max_freq, weights, False,
                                  denominator1, denominator2, True)
            orientation, val = frm_find_best_constrained_angle_interp(
                score, constraint=constraint)

        else:  # no converge after the specified iteration, still get the best result as we can
            if lm_value > max_value:
                max_position = lm_pos
                max_orientation = lm_ang
                max_value = lm_value

        # print max_value # for show the convergence of the algorithm

    return max_position, max_orientation, max_value
Beispiel #4
0
    shifty = np.random.randint(-offset, offset)
    shiftz = np.random.randint(-offset, offset)

    # first rotate and then shift
    v2 = fourier_rotate_vol(v, [phi, psi, the])
    v2 = shift(v2, shiftx, shifty, shiftz, 'spline')

    # add some noise
    v2 = add(v2, 0.01)

    # finally apply the wedge
    v2 = wedge.apply(v2)

    t = Timing()

    # frm_match
    t.start()
    pos, ang = frm_align_vol(v2, [-60, 60], v, [8, 32], 10)
    t1 = t.end()

    dist_old = rotation_distance([phi, psi, the], ang)
    diff_old.append(dist_old)
    total_time1 += t1

    print euclidianDistance([
        shiftx + v.sizeX() / 2, shifty + v.sizeY() / 2, shiftz + v.sizeZ() / 2
    ], pos), dist_old

print
print np.mean(diff_old)
print total_time1 / 100
Beispiel #5
0
from frm import frm_align_vol

from pytom.tools.maths import rotation_distance, euclidianDistance

from pytom.tools.timing import Timing

t = Timing()
t.start()

dis_offset = []
ang_offset = []

for pp in pl:
    v = read(pp.getFilename())
    pos, ang, score = frm_align_vol(v, [-60.0, 60.0], r, [8, 32], 10)
    g_pos = pp.getShift().toVector()
    g_pos = [g_pos[0] + 50, g_pos[1] + 50, g_pos[2] + 50]
    g_ang = [
        pp.getRotation().getZ1(),
        pp.getRotation().getZ2(),
        pp.getRotation().getX()
    ]

    dis_offset.append(euclidianDistance(g_pos, pos))
    ang_offset.append(rotation_distance(g_ang, ang))
    print euclidianDistance(g_pos, pos), rotation_distance(g_ang, ang)

tt = t.end()

import numpy as np
print tt / 100, np.mean(dis_offset), np.mean(ang_offset)
Beispiel #6
0
def frm_align_vol_rscore(vf, wf, vg, wg, b, radius=None, mask=None, peak_offset=None, weights=None, position=None):
    """Obsolete.
    """
    from pytom_volume import vol, rotateSpline, peak
    from pytom.basic.transformations import shift
    from pytom.basic.correlation import xcf
    from pytom.basic.filter import lowpassFilter
    from pytom.basic.structures import Mask
    from pytom_volume import initSphere
    from pytom_numpy import vol2npy

    if vf.sizeX()!=vg.sizeX() or vf.sizeY()!=vg.sizeY() or vf.sizeZ()!=vg.sizeZ():
        raise RuntimeError('Two volumes must have the same size!')

    if mask is None:
        mask = vol(vf.sizeX(), vf.sizeY(), vf.sizeZ())
        initSphere(mask, vf.sizeX()/2, 0,0, vf.sizeX()/2,vf.sizeY()/2,vf.sizeZ()/2)
    elif mask.__class__ == vol:
        pass
    elif mask.__class__ == Mask:
        mask = mask.getVolume()
    elif isinstance(mask, int):
        mask_radius = mask
        mask = vol(vf.sizeX(), vf.sizeY(), vf.sizeZ())
        initSphere(mask, mask_radius, 0,0, vf.sizeX()/2,vf.sizeY()/2,vf.sizeZ()/2)
    else:
        raise RuntimeError('Given mask has wrong type!')

    if peak_offset is None:
        peak_offset = vol(vf.sizeX(), vf.sizeY(), vf.sizeZ())
        initSphere(peak_offset, vf.sizeX()/2, 0,0, vf.sizeX()/2,vf.sizeY()/2,vf.sizeZ()/2)
    elif isinstance(peak_offset, int):
        peak_radius = peak_offset
        peak_offset = vol(vf.sizeX(), vf.sizeY(), vf.sizeZ())
        initSphere(peak_offset, peak_radius, 0,0, vf.sizeX()/2,vf.sizeY()/2,vf.sizeZ()/2)
    elif peak_offset.__class__ == vol:
        pass
    else:
        raise RuntimeError('Peak offset is given wrong!')

    # cut out the outer part which normally contains nonsense
    vf = vf*mask

    # # normalize them first
    # from pytom.basic.normalise import mean0std1
    # mean0std1(vf)
    # mean0std1(vg)

    if position is None: # if position is not given, we have to find it ourself
        # first roughtly determine the orientation (only according to the energy info)
        # get multiple candidate orientations
        orientations = frm_determine_orientation_rscore(vf, wf, vg, wg, b, radius, weights)
    else:
        # the position is given by the user
        vf2 = shift(vf, -position[0]+vf.sizeX()/2, -position[1]+vf.sizeY()/2, -position[2]+vf.sizeZ()/2, 'spline')
        res = frm_fourier_adaptive_wedge_vol_rscore(vf2, wf, vg, wg, b, radius, weights)
        orientation, max_value = frm_find_best_angle_interp(res)

        return position, orientation, max_value

    # iteratively refine the position & orientation
    from pytom.basic.structures import WedgeInfo
    from pytom.tools.maths import euclidianDistance
    max_iter = 10 # maximal number of iterations
    wedge = WedgeInfo([90+wf[0], 90-wf[1]])
    old_pos = [-1, -1, -1]
    vg2 = vol(vg.sizeX(), vg.sizeY(), vg.sizeZ())
    lowpass_vf = lowpassFilter(vf, radius, 0)[0]
    for i in range(max_iter):
        peak_value = 0.0
        position = None
        for orientation in orientations:
            orientation = orientation[0]

            rotateSpline(vg, vg2, orientation[0], orientation[1], orientation[2]) # first rotate
            vg2 = wedge.apply(vg2) # then apply the wedge
            vg2 = lowpassFilter(vg2, radius, 0)[0]
            res = xcf(lowpass_vf, vg2) # find the position
            pos = peak(res, peak_offset)
            # val = res(pos[0], pos[1], pos[2])
            pos, val = find_subpixel_peak_position(vol2npy(res), pos)
            if val > peak_value:
                position = pos
                peak_value = val

        if euclidianDistance(position, old_pos) <= 1.0:
            break
        else:
            old_pos = position

        # here we shift the target, not the reference
        # if you dont want the shift to change the energy landscape, use fourier shift
        vf2 = shift(vf, -position[0]+vf.sizeX()/2, -position[1]+vf.sizeY()/2, -position[2]+vf.sizeZ()/2, 'fourier')
        res = frm_fourier_adaptive_wedge_vol_rscore(vf2, wf, vg, wg, b, radius, weights)
        orientations = frm_find_topn_angles_interp(res)

    return position, orientations[0][0], orientations[0][1]