Beispiel #1
0
 def test_so3_log_singularity(self, batch_size: int = 100):
     """
     Tests whether the `so3_log_map` is robust to the input matrices
     who's rotation angles are close to the numerically unstable region
     (i.e. matrices with low rotation angles).
     """
     # generate random rotations with a tiny angle
     device = torch.device("cuda:0")
     identity = torch.eye(3, device=device)
     rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
     r = [identity, rot180]
     # add random rotations and random almost orthonormal matrices
     r.extend([
         qr(identity + torch.randn_like(identity) * 1e-4)[0] +
         float(i > batch_size // 2) *
         (0.5 - torch.rand_like(identity)) * 1e-3
         # this adds random noise to the second half
         # of the random orthogonal matrices to generate
         # near-orthogonal matrices
         for i in range(batch_size - 2)
     ])
     r = torch.stack(r)
     r.requires_grad = True
     # the log of the rotation matrix r
     r_log = so3_log_map(r, cos_bound=1e-4, eps=1e-2)
     # tests whether all outputs are finite
     self.assertTrue(torch.isfinite(r_log).all())
     # tests whether the gradient is not None and all finite
     loss = r.sum()
     loss.backward()
     self.assertIsNotNone(r.grad)
     self.assertTrue(torch.isfinite(r.grad).all())
Beispiel #2
0
    def init_rot(batch_size: int = 10):
        """
        Randomly generate a batch of `batch_size` 3x3 rotation matrices.
        """
        device = torch.device("cuda:0")

        # TODO(dnovotny): replace with random_rotation from random_rotation.py
        rot = []
        for _ in range(batch_size):
            r = qr(torch.randn((3, 3), device=device))[0]
            f = torch.randint(2, (3, ), device=device, dtype=torch.float32)
            if f.sum() % 2 == 0:
                f = 1 - f
            rot.append(r * (2 * f - 1).float())
        rot = torch.stack(rot)

        return rot
Beispiel #3
0
 def test_se3_log_singularity(self, batch_size: int = 100):
     """
     Tests whether the `se3_log_map` is robust to the input matrices
     whose rotation angles and translations are close to the numerically
     unstable region (i.e. matrices with low rotation angles
     and 0 translation).
     """
     # generate random rotations with a tiny angle
     device = torch.device("cuda:0")
     identity = torch.eye(3, device=device)
     rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
     r = [identity, rot180]
     r.extend([
         qr(identity + torch.randn_like(identity) * 1e-6)[0] +
         float(i > batch_size // 2) *
         (0.5 - torch.rand_like(identity)) * 1e-8
         # this adds random noise to the second half
         # of the random orthogonal matrices to generate
         # near-orthogonal matrices
         for i in range(batch_size - 2)
     ])
     r = torch.stack(r)
     # tiny translations
     t = torch.randn(batch_size, 3, dtype=r.dtype, device=device) * 1e-6
     # create the transform matrix
     transform = torch.zeros(batch_size,
                             4,
                             4,
                             dtype=torch.float32,
                             device=device)
     transform[:, :3, :3] = r
     transform[:, 3, :3] = t
     transform[:, 3, 3] = 1.0
     transform.requires_grad = True
     # the log of the transform
     log_transform = se3_log_map(transform, eps=1e-4, cos_bound=1e-4)
     # tests whether all outputs are finite
     self.assertTrue(torch.isfinite(log_transform).all())
     # tests whether all gradients are finite and not None
     loss = log_transform.sum()
     loss.backward()
     self.assertIsNotNone(transform.grad)
     self.assertTrue(torch.isfinite(transform.grad).all())
Beispiel #4
0
 def test_so3_cos_bound(self, batch_size: int = 100):
     """
     Checks that for an identity rotation `R=I`, the so3_rotation_angle returns
     non-finite gradients when `cos_bound=None` and finite gradients
     for `cos_bound > 0.0`.
     """
     # generate random rotations with a tiny angle to generate cases
     # with the gradient singularity
     device = torch.device("cuda:0")
     identity = torch.eye(3, device=device)
     rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
     r = [identity, rot180]
     r.extend([
         qr(identity + torch.randn_like(identity) * 1e-4)[0]
         for _ in range(batch_size - 2)
     ])
     r = torch.stack(r)
     r.requires_grad = True
     for is_grad_finite in (True, False):
         # clear the gradients and decide the cos_bound:
         #     for is_grad_finite we run so3_rotation_angle with cos_bound
         #     set to a small float, otherwise we set to 0.0
         r.grad = None
         cos_bound = 1e-4 if is_grad_finite else 0.0
         # compute the angles of r
         angles = so3_rotation_angle(r, cos_bound=cos_bound)
         # tests whether all outputs are finite in both cases
         self.assertTrue(torch.isfinite(angles).all())
         # compute the gradients
         loss = angles.sum()
         loss.backward()
         # tests whether the gradient is not None for both cases
         self.assertIsNotNone(r.grad)
         if is_grad_finite:
             # all grad values have to be finite
             self.assertTrue(torch.isfinite(r.grad).all())