def __init__(self, backbone: RNN, **kwargs):
     super().__init__()
     self.save_hyperparameters(kwargs)
     self.backbone = backbone
     if self.hparams.forcasting:
         self.criterion = nn.MSELoss()
         self.metric = MeanSquaredError()
     else:
         self.criterion = nn.CrossEntropyLoss()
         self.metric = Accuracy()
Beispiel #2
0
 def _setup_metrics(self):
     self._mse = MeanSquaredError()
     self._mae = MeanAbsoluteError()
Beispiel #3
0
class EncDecRegressionModel(_EncDecBaseModel):
    """Encoder decoder class for speech regression models.
    Model class creates training, validation methods for setting up data
    performing model forward pass.
    """
    @classmethod
    def list_available_models(cls) -> List[PretrainedModelInfo]:
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        result = []

        return result

    def __init__(self, cfg: DictConfig, trainer: Trainer = None):
        if not cfg.get('is_regression_task', False):
            raise ValueError(
                f"EndDecRegressionModel requires the flag is_regression_task to be set as true"
            )
        super().__init__(cfg=cfg, trainer=trainer)

    def _setup_preprocessor(self):
        return EncDecRegressionModel.from_config_dict(self._cfg.preprocessor)

    def _setup_encoder(self):
        return EncDecRegressionModel.from_config_dict(self._cfg.encoder)

    def _setup_decoder(self):
        return EncDecRegressionModel.from_config_dict(self._cfg.decoder)

    def _setup_loss(self):
        return MSELoss()

    def _setup_metrics(self):
        self._mse = MeanSquaredError()
        self._mae = MeanAbsoluteError()

    @property
    def output_types(self) -> Optional[Dict[str, NeuralType]]:
        return {"preds": NeuralType(tuple('B'), RegressionValuesType())}

    @typecheck()
    def forward(self, input_signal, input_signal_length):
        logits = super().forward(input_signal=input_signal,
                                 input_signal_length=input_signal_length)
        return logits.view(-1)

    # PTL-specific methods
    def training_step(self, batch, batch_idx):
        self.training_step_end()
        audio_signal, audio_signal_len, targets, targets_len = batch
        logits = self.forward(input_signal=audio_signal,
                              input_signal_length=audio_signal_len)
        loss = self.loss(preds=logits, labels=targets)
        train_mse = self._mse(preds=logits, target=targets)
        train_mae = self._mae(preds=logits, target=targets)

        tensorboard_logs = {
            'train_loss': loss,
            'train_mse': train_mse,
            'train_mae': train_mae,
            'learning_rate': self._optimizer.param_groups[0]['lr'],
        }

        self.log_dict(tensorboard_logs)
        return {'loss': loss}

    def validation_step(self, batch, batch_idx, dataloader_idx: int = 0):
        audio_signal, audio_signal_len, targets, targets_len = batch
        logits = self.forward(input_signal=audio_signal,
                              input_signal_length=audio_signal_len)
        loss_value = self.loss(preds=logits, labels=targets)
        val_mse = self._mse(preds=logits, target=targets)
        val_mae = self._mae(preds=logits, target=targets)

        return {'val_loss': loss_value, 'val_mse': val_mse, 'val_mae': val_mae}

    def test_step(self, batch, batch_idx, dataloader_idx: int = 0):
        logs = self.validation_step(batch, batch_idx, dataloader_idx)

        return {
            'test_loss': logs['val_loss'],
            'test_mse': logs['test_mse'],
            'test_mae': logs['val_mae']
        }

    def multi_validation_epoch_end(self, outputs, dataloader_idx: int = 0):
        val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean()
        val_mse = self._mse.compute()
        self._mse.reset()
        val_mae = self._mae.compute()
        self._mae.reset()

        tensorboard_logs = {
            'val_loss': val_loss_mean,
            'val_mse': val_mse,
            'val_mae': val_mae
        }

        return {
            'val_loss': val_loss_mean,
            'val_mse': val_mse,
            'val_mae': val_mae,
            'log': tensorboard_logs
        }

    def multi_test_epoch_end(self, outputs, dataloader_idx: int = 0):
        test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean()
        test_mse = self._mse.compute()
        self._mse.reset()
        test_mae = self._mae.compute()
        self._mae.reset()

        tensorboard_logs = {
            'test_loss': test_loss_mean,
            'test_mse': test_mse,
            'test_mae': test_mae
        }

        return {
            'test_loss': test_loss_mean,
            'test_mse': test_mse,
            'test_mae': test_mae,
            'log': tensorboard_logs
        }

    @torch.no_grad()
    def transcribe(self,
                   paths2audio_files: List[str],
                   batch_size: int = 4) -> List[float]:
        """
        Generate class labels for provided audio files. Use this method for debugging and prototyping.

        Args:
            paths2audio_files: (a list) of paths to audio files. \
                Recommended length per file is approximately 1 second.
            batch_size: (int) batch size to use during inference. \
                Bigger will result in better throughput performance but would use more memory.

        Returns:

            A list of predictions in the same order as paths2audio_files
        """
        predictions = super().transcribe(paths2audio_files,
                                         batch_size,
                                         logprobs=True)
        return [float(pred) for pred in predictions]

    def _update_decoder_config(self, labels, cfg):

        OmegaConf.set_struct(cfg, False)

        if 'params' in cfg:
            cfg.params.num_classes = 1
        else:
            cfg.num_classes = 1

        OmegaConf.set_struct(cfg, True)