def test_step(self, batch, batch_nb):
        sender_input, receiver_input, labels = batch
        test_result = self(sender_input, receiver_input, labels)
        result = pl.EvalResult()
        result.log('test_loss', test_result['log']['loss'])
        result.log('test_acc', test_result['log']['acc'])

        argmax_sample = test_result['log']['distr'].argmax(dim=-1)
        z_one_hot = \
            torch.zeros(
                len(argmax_sample),
                test_result['log']['distr'].size(-1)).to(argmax_sample.device)
        z_one_hot.scatter_(1, argmax_sample.view(-1, 1), 1)
        z_one_hot = z_one_hot.view(len(argmax_sample),
                                   test_result['log']['distr'].size(-1))

        if not hasattr(self, 'usage'):
            self.usage = z_one_hot.sum(dim=0).cpu().numpy()
        else:
            self.usage += z_one_hot.sum(dim=0).cpu().numpy()

        if 'support' in test_result['log'].keys():
            result.log('test_support',
                       test_result['log']['support'],
                       prog_bar=True)
        return result
    def validation_step(self, batch, batch_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)
        aeloss, log_dict_ae = self.loss(qloss,
                                        x,
                                        xrec,
                                        self.global_step,
                                        split="val")
        rec_loss = log_dict_ae["val/rec_loss"]
        output = pl.EvalResult(checkpoint_on=rec_loss)
        output.log("val/rec_loss",
                   rec_loss,
                   prog_bar=True,
                   logger=True,
                   on_step=True,
                   on_epoch=True)
        output.log("val/aeloss",
                   aeloss,
                   prog_bar=True,
                   logger=True,
                   on_step=True,
                   on_epoch=True)
        output.log_dict(log_dict_ae)

        return output
Beispiel #3
0
    def test_step(self, batch, batch_idx):
        txt, segment, mask, img, y = batch

        if self.hparams.model == "bert":
            y_hat = self(txt, mask, segment)
        elif self.hparams.model == "mmbt":
            y_hat = self(txt, mask, segment, img)
        else:
            raise ValueError(
                f'Specified model ({hparams.model}) not implemented')

        loss = self.criterion(y_hat, y)

        if self.hparams.task_type == "multilabel":
            #preds = torch.sigmoid(y_hat).cpu().detach().numpy() > 0.5
            preds = (torch.sigmoid(y_hat) > 0.5).float().detach()
        else:
            preds = torch.nn.functional.softmax(
                y_hat, dim=1).argmax(dim=1).cpu().detach().numpy()

        if self.hparams.task_type == "multilabel":
            macro_f1 = f1_score(preds, y, class_reduction='macro')
            micro_f1 = f1_score(preds, y, class_reduction='micro')

            result = pl.EvalResult(checkpoint_on=micro_f1)
            result.log('test_micro_f1', micro_f1, prog_bar=True, on_epoch=True)
            result.log('test_macro_f1', macro_f1, prog_bar=True, on_epoch=True)
        else:
            acc = accuracy(preds, y)
            result.log('test_acc', acc, prog_bar=True, on_epoch=True)
        result.log('test_loss', loss, prog_bar=True, on_epoch=True)

        return result
    def validation_step(self, batch, batch_idx):
        batch = from_batch_get_model_input(batch,
                                           self.d_model,
                                           use_pointer=self.use_pointer,
                                           use_coverage=self.use_coverage)

        batch[0] = patch_src(batch[0])
        batch[6], batch[8] = patch_trg(batch[6])

        inputs = {
            'encoder_input': batch[0],
            'encoder_mask': batch[1],
            'encoder_with_oov': batch[2],
            'oovs_zero': batch[3],
            'context_vec': batch[4],
            'coverage': batch[5],
            'decoder_input': batch[6],
            'decoder_mask': batch[7],
            'decoder_target': batch[8],
            'mode': 'train'
        }

        loss = self(**inputs)
        #print(loss)
        result = pl.EvalResult(checkpoint_on=loss)
        result.log('val_loss', loss, prog_bar=True)
        return result
Beispiel #5
0
 def test_step(self, batch, batch_idx):
     y_hat = self(batch['input_ids'])
     loss = nn.CrossEntropyLoss()(y_hat, batch['label'].flatten())
     acc = FM.accuracy(y_hat.detach().argmax(axis=1), batch['label'].flatten(), num_classes=2)
     result = pl.EvalResult(checkpoint_on=loss)
     result.log_dict({'val_acc': acc, 'val_loss': loss})
     return result
Beispiel #6
0
 def test_step(self, batch: TensorDict, _) -> pl.EvalResult:
     loss, info = self.test_loss(batch)
     info = self.stat_to_tensor_dict(info)
     result = pl.EvalResult()
     result.log("test/loss", loss)
     result.log_dict({"test/" + k: v for k, v in info.items()})
     return result
Beispiel #7
0
 def validation_step(self, batch, batch_idx):
     scans, true_masks = batch
     predicted_masks = self(scans)
     loss = self.criterion(predicted_masks, true_masks)
     result = pl.EvalResult(checkpoint_on=loss)
     result.log('val_loss', loss)
     return result
Beispiel #8
0
    def validation_step(self, batch, batch_idx):
        images, target = batch
        output = self(images)
        loss = F.cross_entropy(output, target)
        acc1, acc5 = self.__accuracy(output, target, topk=(1, 5))

        result = pl.EvalResult(checkpoint_on=loss, early_stop_on=loss)
        result.log('val_loss',
                   loss,
                   on_step=True,
                   on_epoch=True,
                   prog_bar=True,
                   logger=True,
                   sync_dist=True)
        result.log('val_acc1',
                   acc1,
                   on_step=True,
                   on_epoch=True,
                   prog_bar=True,
                   logger=True,
                   sync_dist=True)
        result.log('val_acc5',
                   acc5,
                   on_step=True,
                   on_epoch=True,
                   prog_bar=True,
                   logger=True,
                   sync_dist=True)

        return result
Beispiel #9
0
 def test_step(self, batch, batch_idx):
     x, y = batch
     y_hat = self(x)
     loss = F.mse_loss(y_hat, y)
     result = pl.EvalResult(checkpoint_on=loss)
     result.log('test_loss', loss)
     return result
Beispiel #10
0
	def test_step(self, batch, batch_idx):
		x, y = batch
		y_hat = self(x)
		loss = criterion(y_hat, y)
		result = pl.EvalResult()
		result.log('test_loss', loss)
		return result
Beispiel #11
0
 def validation_step(self, batch, batch_idx):
     loss = self.shared_step(batch, batch_idx)
     # checkpoint on the loss value
     result = pl.EvalResult(checkpoint_on=loss)
     # log the loss for each epoch only, you only want to validate for each epoch
     result.log('avg_val_loss', loss, on_epoch=True, on_step=False)
     return result
Beispiel #12
0
    def validation_step(self, batch, batch_idx):

        output, val_loss = self.shared_step(batch)

        result = pl.EvalResult(checkpoint_on=val_loss)
        result.log('val_loss', val_loss)

        #Edge filter performance
        preds = F.sigmoid(output) > 0.5  #Maybe send to CPU??
        edge_positive = preds.sum().float()

        if ('pid' in self.hparams["regime"]):
            y_pid = batch.pid[batch.edge_index[0]] == batch.pid[
                batch.edge_index[1]]
            edge_true = y_pid.sum()
            edge_true_positive = (y_pid & preds).sum().float()
        else:
            edge_true = batch.y.sum()
            edge_true_positive = (batch.y.bool() & preds).sum().float()

        result.log_dict({
            'eff': torch.tensor(edge_true_positive / edge_true),
            'pur': torch.tensor(edge_true_positive / edge_positive)
        })

        return result
Beispiel #13
0
 def validation_step(self, batch, batch_idx):
     x, y = batch
     y_hat = self(x)
     loss = F.l1_loss(y_hat, y)
     result = pl.EvalResult(early_stop_on=loss, checkpoint_on=loss)
     result.log("val_loss", loss, sync_dist=True)
     return result
Beispiel #14
0
 def validation_step(self, batch, batch_idx):
     x, y = batch
     y_hat = self(x)
     loss = F.mse_loss(y_hat, y)
     result = pl.EvalResult(checkpoint_on=loss)
     result.log('val_loss', torch.sqrt(loss))
     return result
Beispiel #15
0
 def validation_step(self, batch, batch_idx):
     x, y = batch
     y_hat = self(x).squeeze(1)
     loss = F.binary_cross_entropy(y_hat, y.type(torch.cuda.FloatTensor))
     result = pl.EvalResult(checkpoint_on=loss)
     result.log('val_loss', loss)
     return result
Beispiel #16
0
 def test_step(self, batch, batch_idx):
     x, y = batch
     y_hat = self(x)
     loss = F.cross_entropy(y_hat, y)
     result = pl.EvalResult()
     result.log('test_loss', loss)
     return result
Beispiel #17
0
 def validation_step(self, batch: TensorDict, _) -> pl.EvalResult:
     loss, info = self.val_loss(batch)
     info = self.stat_to_tensor_dict(info)
     result = pl.EvalResult(early_stop_on=loss)
     result.log("val/loss", loss)
     result.log_dict({"val/" + k: v for k, v in info.items()})
     return result
    def validation_epoch_end(self, outputs):
        # OPTIONAL
        avg_loss = outputs.valid_batch_loss.mean()
        result = pl.EvalResult(checkpoint_on=avg_loss)
        result.log('valid_loss', avg_loss, on_epoch=True, prog_bar=True)

        return result
Beispiel #19
0
 def validation_step(self, batch, batch_idx):
     u = self(batch)
     Phi, = batch
     loss = torch.nn.MSELoss()(u, Phi)
     result = pl.EvalResult(checkpoint_on=loss)
     result.log('val_loss', loss)
     return result
    def test_epoch_end(self, outputs):
        # OPTIONAL
        avg_loss = outputs.test_batch_loss.mean()

        result = pl.EvalResult()
        result.log('test_loss', avg_loss, on_epoch=True)
        return result
Beispiel #21
0
 def test_step(self, batch, batch_idx):
     scans, true_masks = batch
     predicted_masks = self(scans)
     loss = self.criterion(predicted_masks, true_masks)
     result = pl.EvalResult()
     result.log('test_loss', loss)
     return result
Beispiel #22
0
    def test_epoch_end(self, test_outputs):
        mrns = test_outputs.mrn
        accounts = test_outputs.account
        sent_orders = test_outputs.sent_order
        sum_sents = test_outputs.sum_sent_toks
        references = test_outputs.reference

        output_df = {
            'mrn': mrns,
            'account': accounts,
            'sent_orders': sent_orders,
            'prediction': sum_sents,
            'reference': references
        }
        output_df = pd.DataFrame(output_df)
        exp_str = 'neusum_{}_{}'.format(self.args.experiment,
                                        str(MAX_GEN_SUM_TOK_CT))
        out_fn = os.path.join(out_dir, 'predictions',
                              '{}_validation.csv'.format(exp_str))
        print(
            'To evaluate, run: cd ../../evaluations && python rouge.py --experiment {}'
            .format(exp_str))

        output_df.to_csv(out_fn, index=False)

        eval_result = pl.EvalResult()
        eval_result.log('rank@1', self.avg(test_outputs.rel_r1), on_epoch=True)
        eval_result.log('rank@2', self.avg(test_outputs.rel_r2), on_epoch=True)
        eval_result.log('rank@3', self.avg(test_outputs.rel_r3), on_epoch=True)
        eval_result.log('rank@4', self.avg(test_outputs.rel_r4), on_epoch=True)
        eval_result.log('rank@5+',
                        self.avg(test_outputs.rel_r5plus),
                        on_epoch=True)
        return eval_result
Beispiel #23
0
    def test_step(self, batch, batch_idx):
        query_tokens, batch_qids, batch_qrels = batch
        queries = self.forward(query_tokens, token_type=1)
        scores, indices = torch.einsum("ae, be->ba", self.index_tensor,
                                       queries).topk(
                                           self.hparams.test_rank_len,
                                           sorted=True)
        rankings = [row.tolist() for row in torch.take(self.pid_map, indices)]

        if self.hparams.save_test_rankings:
            with open(self.hparams.save_test_rankings, "a") as w:
                for qid, ranking in zip(batch_qids, rankings):
                    for i, pid in enumerate(ranking):
                        w.write("{}\t{}\t{}\n".format(qid, pid, i + 1))

        metrics = calc_ranking_metrics(rankings,
                                       batch_qrels,
                                       count_rankings=False)
        metrics = {"test/" + k: v for k, v in metrics.items()}
        result = pl.EvalResult()
        result.log_dict(
            metrics,
            on_step=False,
            on_epoch=True,
            prog_bar=True,
        )
        return result
    def validation_step(self, batch, batch_idx):
        """
        Called every batch
        Lightning calls this inside the validation loop with the data from the validation dataloader
        passed in as `batch`.
        """
        batch_imgs, heatmaps_gt, last_heatmap_preds_tch = batch
        #batch_imgs, heatmaps_gt = batch

        # get prediction
        combined_heatmap_preds = self(batch_imgs)

        # get prediction from teacher network
        #combined_heatmap_preds_tch = self.net_tch(batch_imgs)
        #last_heatmap_preds_tch = combined_heatmap_preds_tch[:, self.nstack_tch - 1]

        gt_loss = self.calc_loss(combined_heatmap_preds, heatmaps_gt)
        tch_loss = self.calc_loss(combined_heatmap_preds, last_heatmap_preds_tch)
        # get total loss
        val_loss = self.this_config['lambda'] * gt_loss + (1 - self.this_config['lambda']) * tch_loss
        #val_result = pl.EvalResult(early_stop_on=val_loss, checkpoint_on=val_loss)
        #val_result.log('val_loss', val_loss, on_step=True, on_epoch=True, prog_bar=True)
        val_result = pl.EvalResult(early_stop_on=gt_loss, checkpoint_on=gt_loss)
        val_result.log('val_loss', gt_loss, on_step=True, on_epoch=True, prog_bar=True)

        return val_result
Beispiel #25
0
    def test_step(self, batch, batch_idx):
        var, x_mean = self.calculate_var(batch, batch_idx)

        batch_size, n_class, length = var.size()

        _, label = batch
        targets = (torch.ones(
            (batch_size, )).type_as(label) * label)[:,
                                                    None].expand(-1, length)

        loss = torch.zeros((1, ))

        result = pl.EvalResult(checkpoint_on=loss)

        for threshold in [0.001, 0.002, 0.005, 0.01]:
            confident_idx = torch.where((var < threshold).all(dim=1))
            num_confident = len(confident_idx[0])
            pred = x_mean.max(dim=1)[1]

            tp_confident = (targets == pred)[confident_idx].sum()

            acc = tp_confident / float(num_confident)

            discarded = torch.Tensor([(batch_size * length) - num_confident])

            result.log('val_loss', loss)
            result.log(f'test_{threshold}_discarded_prct',
                       discarded / float(batch_size * length))
            result.log(f'test_{threshold}_discarded', discarded)
            result.log(f'test_{threshold}_acc', acc)

        return result
Beispiel #26
0
    def validation_step(self, batch, batch_idx):
        mixtures, mixture_ids, window_offsets, input_conditions, target_names, targets = batch

        estimated_targets = self.separate(
            mixtures, input_conditions)[:, self.hop_length:-self.hop_length]
        targets = targets[:, self.hop_length:-self.hop_length]

        for mixture, mixture_idx, window_offset, input_condition, target_name, estimated_target \
                in zip(mixtures, mixture_ids, window_offsets, input_conditions, target_names, estimated_targets):
            self.valid_estimation_dict[target_name][mixture_idx.item(
            )][window_offset.item()] = estimated_target.detach().cpu().numpy()

        # SDR - like Loss
        s_targets = (
            (targets * estimated_targets).sum(axis=-2, keepdims=True) /
            ((targets**2).sum(axis=-2, keepdims=True) + 1e-8)) * targets
        distortion = estimated_targets - s_targets

        loss = (((s_targets**2).sum(-2) + 1e-8).log() -
                ((distortion**2).sum(-2) + 1e-8).log()).mean()

        # large value of SDR means good performance, so that we take the negative of sdr for the validation loss
        loss = -1 * loss

        result = pl.EvalResult(checkpoint_on=loss, early_stop_on=loss)
        result.log('loss/val_loss',
                   loss,
                   prog_bar=False,
                   logger=True,
                   on_step=False,
                   on_epoch=True,
                   reduce_fx=torch.mean)
        return result
Beispiel #27
0
    def validation_step(self, batch, batch_idx):
        """
        The validation step, run per batch during training.

        Parameters
        ----------
        batch : torch.Tensor
            The Data batch.
        batch_idx : int
            The batch id.

        Returns
        -------
        Result
            The output of forward pass.

        Notes
        -----
        Supports Early Stopping on loss by default.

        # TODO: make a validation dictionary / callback for more control.
        """
        x, y = batch
        y_hat = self.model(x)
        loss = self.loss(y_hat, y)
        metrics = self.metrics(y_hat, y)
        result = pl.EvalResult(checkpoint_on=loss, early_stop_on=loss)
        result.log_dict({'val_metric': metrics, 'val_loss': loss})
        return result
 def validation_step(self, batch, batch_idx):
     x, y = batch
     y_hat = self(x)
     loss = F.cross_entropy(y_hat, y)
     result = pl.EvalResult(checkpoint_on=loss)
     result.log('val_loss', loss)
     return result
Beispiel #29
0
    def validation_epoch_end(self, validation_step_outputs):
        gt_classes = validation_step_outputs.gt_classes
        inout_mask = gt_classes < 2
        gt_inout = gt_classes[inout_mask]
        inout_prob = validation_step_outputs.inout_prob[inout_mask]
        inout_acc = modules.accuracy(inout_prob, gt_inout, topk=(1, ))[0]

        label_mask = gt_classes >= 2
        label_prob = validation_step_outputs.label_prob[label_mask]
        gt_label = gt_classes[label_mask] - 2
        top1, top5 = modules.accuracy(label_prob, gt_label, (1, 5))
        cate_topk = modules.accuracy_per_cate(label_prob, gt_label, (1, 5))
        result = pl.EvalResult()
        result.log_dict(
            {
                'top1': top1.item(),
                'top5': top5.item(),
                'inout_acc': inout_acc.item(),
            },
            prog_bar=True,
            on_epoch=True)
        print('cate_topk', cate_topk)
        print('top1: ', top1.item())
        print('top5: ', top5.item())
        return result
Beispiel #30
0
 def test_step(self, batch, batch_idx):
     outputs = self(batch)
     loss = outputs[0]
     y_hat = outputs[1]
     acc = FM.accuracy(y_hat.detach().argmax(axis=1), batch['labels'].flatten(), num_classes=2)
     result = pl.EvalResult(checkpoint_on=loss)
     result.log_dict({'val_acc': acc, 'val_loss': loss})
     return result